scholarly journals Metabolic Engineering of Escherichia coli for Enhanced Production of Succinic Acid, Based on Genome Comparison and In Silico Gene Knockout Simulation

2005 ◽  
Vol 71 (12) ◽  
pp. 7880-7887 ◽  
Author(s):  
Sang Jun Lee ◽  
Dong-Yup Lee ◽  
Tae Yong Kim ◽  
Byung Hun Kim ◽  
Jinwon Lee ◽  
...  

ABSTRACT Comparative analysis of the genomes of mixed-acid-fermenting Escherichia coli and succinic acid-overproducing Mannheimia succiniciproducens was carried out to identify candidate genes to be manipulated for overproducing succinic acid in E. coli. This resulted in the identification of five genes or operons, including ptsG, pykF, sdhA, mqo, and aceBA, which may drive metabolic fluxes away from succinic acid formation in the central metabolic pathway of E. coli. However, combinatorial disruption of these rationally selected genes did not allow enhanced succinic acid production in E. coli. Therefore, in silico metabolic analysis based on linear programming was carried out to evaluate the correlation between the maximum biomass and succinic acid production for various combinatorial knockout strains. This in silico analysis predicted that disrupting the genes for three pyruvate forming enzymes, ptsG, pykF, and pykA, allows enhanced succinic acid production. Indeed, this triple mutation increased the succinic acid production by more than sevenfold and the ratio of succinic acid to fermentation products by ninefold. It could be concluded that reducing the metabolic flux to pyruvate is crucial to achieve efficient succinic acid production in E. coli. These results suggest that the comparative genome analysis combined with in silico metabolic analysis can be an efficient way of developing strategies for strain improvement.

2006 ◽  
Vol 72 (3) ◽  
pp. 1939-1948 ◽  
Author(s):  
Sang Jun Lee ◽  
Hyohak Song ◽  
Sang Yup Lee

ABSTRACT Succinic acid is a four-carbon dicarboxylic acid produced as one of the fermentation products of anaerobic metabolism. Based on the complete genome sequence of a capnophilic succinic acid-producing rumen bacterium, Mannheimia succiniciproducens, gene knockout studies were carried out to understand its anaerobic fermentative metabolism and consequently to develop a metabolically engineered strain capable of producing succinic acid without by-product formation. Among three different CO2-fixing metabolic reactions catalyzed by phosphoenolpyruvate (PEP) carboxykinase, PEP carboxylase, and malic enzyme, PEP carboxykinase was the most important for the anaerobic growth of M. succiniciproducens and succinic acid production. Oxaloacetate formed by carboxylation of PEP was found to be converted to succinic acid by three sequential reactions catalyzed by malate dehydrogenase, fumarase, and fumarate reductase. Major metabolic pathways leading to by-product formation were successfully removed by disrupting the ldhA, pflB, pta, and ackA genes. This metabolically engineered LPK7 strain was able to produce 13.4 g/liter of succinic acid from 20 g/liter glucose with little or no formation of acetic, formic, and lactic acids, resulting in a succinic acid yield of 0.97 mol succinic acid per mol glucose. Fed-batch culture of M. succiniciproducens LPK7 with intermittent glucose feeding allowed the production of 52.4 g/liter of succinic acid, with a succinic acid yield of 1.16 mol succinic acid per mol glucose and a succinic acid productivity of 1.8 g/liter/h, which should be useful for industrial production of succinic acid.


2011 ◽  
Vol 74 (1) ◽  
pp. 94-100 ◽  
Author(s):  
A. LONDERO ◽  
R. QUINTA ◽  
A. G. ABRAHAM ◽  
R. SERENO ◽  
G. DE ANTONI ◽  
...  

We investigated the chemical and microbiological compositions of three types of whey to be used for kefir fermentation as well as the inhibitory capacity of their subsequent fermentation products against 100 Salmonella sp. and 100 Escherichia coli pathogenic isolates. All the wheys after fermentation with 10% (wt/vol) kefir grains showed inhibition against all 200 isolates. The content of lactic acid bacteria in fermented whey ranged from 1.04 × 107 to 1.17 × 107 CFU/ml and the level of yeasts from 2.05 × 106 to 4.23 × 106 CFU/ml. The main changes in the chemical composition during fermentation were a decrease in lactose content by 41 to 48% along with a corresponding lactic acid production to a final level of 0.84 to 1.20% of the total reaction products. The MIC was a 30% dilution of the fermentation products for most of the isolates, while the MBC varied between 40 and 70%, depending on the isolate. The pathogenic isolates Salmonella enterica serovar Enteritidis 2713 and E. coli 2710 in the fermented whey lost their viability after 2 to 7 h of incubation. When pathogens were deliberately inoculated into whey before fermentation, the CFU were reduced by 2 log cycles for E. coli and 4 log cycles for Salmonella sp. after 24 h of incubation. The inhibition was mainly related to lactic acid production. This work demonstrated the possibility of using kefir grains to ferment an industrial by-product in order to obtain a natural acidic preparation with strong bacterial inhibitory properties that also contains potentially probiotic microorganisms.


2015 ◽  
Vol 91 (9) ◽  
pp. 2412-2418 ◽  
Author(s):  
Ming-ke Wu ◽  
Zhao Guan ◽  
Ya-jie Wang ◽  
Jiang-feng Ma ◽  
Hao Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document