scholarly journals A continuous epitope from transmissible gastroenteritis virus S protein fused to E. coli heat-labile toxin B subunit expressed by attenuated Salmonella induces serum and secretory immunity

1996 ◽  
Vol 41 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Cristian Smerdou ◽  
Ines M. Anton ◽  
Juan Plana ◽  
Roy Curtiss ◽  
Luis Enjuanes
Pathogens ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 2 ◽  
Author(s):  
Carlos M. Sanchez ◽  
Alejandro Pascual-Iglesias ◽  
Isabel Sola ◽  
Sonia Zuñiga ◽  
Luis Enjuanes

Transmissible gastroenteritis virus (TGEV) is an enteric coronavirus causing high morbidity and mortality in porcine herds worldwide, that possesses both enteric and respiratory tropism. The ability to replicate in the enteric tract directly correlates with virulence, as TGEVs with an exclusive respiratory tropism are attenuated. The tissue tropism is determined by spike (S) protein, although the molecular bases for enteric tropism remain to be fully characterized. Both pAPN and sialic acid binding domains (aa 506–655 and 145–155, respectively) are necessary but not sufficient for enteric tract infection. Using a TGEV infectious cDNA and enteric (TGEV-SC11) or respiratory (TGEV-SPTV) isolates, encoding a full-length S protein, a set of chimeric recombinant viruses, with a sequential modification in S protein amino terminus, was engineered. In vivo tropism, either enteric, respiratory or both, was studied by inoculating three-day-old piglets and analyzing viral titers in lung and gut. The data indicated that U655>G change in S gene (S219A in S protein) was required to confer enteric tropism to a respiratory virus that already contains the pAPN and sialic acid binding domains in its S protein. Moreover, an engineered virus containing U655>G and a 6 nt insertion at position 1124 (Y374-T375insND in S protein) was genetically stable after passage in cell cultures, and increased virus titers in gut by 1000-fold. We postulated that the effect of these residues in enteric tropism may be mediated by the modification of both glycosaminoglycan binding and S protein structure.


2014 ◽  
Vol 62 (3) ◽  
pp. 293-303
Author(s):  
In-Gyeong Oh ◽  
Chetan Jawale ◽  
John Lee

This study aimed to investigate the adjuvant effect of recombinant attenuatedSalmonellaexpressing cholera toxin B subunit (CTB) andEscherichia coliheat-labile enterotoxin B subunit (LTB) for the P-fimbriae subunit-based vaccine of avian pathogenicE. coli(APEC) in a murine model. The PapA-specific sIgA and IgG responses were significantly enhanced after immunisation with theSalmonella-PapA vaccine in the presence of CTB or LTB. The group immunised with theSalmonella-LTB strain promoted Th1-type immunity, whereas that immunised with theSalmonella-CTB strain produced Th2-type immunity. We concluded that bothSalmonella-CTB and -LTB strains can enhance the immune response to PapA, and that the LTB strain may be a more effective adjuvant for APEC vaccination, which requires higher Th1-type immunity for protection. Thus, our findings provide evidence that immunisation with an adjuvant, LTB, is one of the strategies of developing effective vaccines against P-fimbriated APEC.


2009 ◽  
Vol 21 (5) ◽  
pp. 598-608 ◽  
Author(s):  
Lissett López ◽  
Angel Venteo ◽  
Marga García ◽  
Ana Camuñas ◽  
Ana Ranz ◽  
...  

A new commercially available antigen-capture, blocking enzyme-linked immunosorbent assay (antigen-capture b-ELISA), based on baculovirus truncated-S recombinant protein of Transmissible gastroenteritis virus (TGEV) and 3 specific monoclonal antibodies, was developed and evaluated by examining a panel of 453 positive Porcine respiratory coronavirus (PRCoV), 31 positive TGEV, and 126 negative field sera by using another commercially available differential coronavirus b-ELISA as the reference technique to differentiate TGEV- from PRCoV-induced antibodies. The recombinant S protein-based ELISA appeared to be 100% sensitive for TGEV and PRCoV detection and highly specific for TGEV and PRCoV detection (100% and 92.06%, respectively), when qualitative results (positive or negative) were compared with those of the reference technique. In variability experiments, the ELISA gave consistent results when the same serum was evaluated on different wells and different plates. These results indicated that truncated recombinant S protein is a suitable alternative to the complete virus as antigen in ELISA assays. The use of recombinant S protein as antigen offers great advantages because it is an easy-to-produce, easy-to-standardize, noninfectious antigen that does not require further purification or concentration. Those advantages represent an important improvement for antigen preparation, in comparison with other assays in which an inactivated virus from mammalian cell cultures is used.


Virus Genes ◽  
2010 ◽  
Vol 42 (2) ◽  
pp. 212-219 ◽  
Author(s):  
Nabil Ben Salem Abid ◽  
Sergei A. Chupin ◽  
Olga P. Bjadovskaya ◽  
Olga G. Andreeva ◽  
Mahjoub Aouni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document