scholarly journals Ability of SPI2 mutant of S. typhi to effectively induce antibody responses to the mucosal antigen enterotoxigenic E. coli heat labile toxin B subunit after oral delivery to humans

Vaccine ◽  
2007 ◽  
Vol 25 (21) ◽  
pp. 4175-4182 ◽  
Author(s):  
S. Khan ◽  
S. Chatfield ◽  
R. Stratford ◽  
J. Bedwell ◽  
M. Bentley ◽  
...  
2014 ◽  
Vol 62 (3) ◽  
pp. 293-303
Author(s):  
In-Gyeong Oh ◽  
Chetan Jawale ◽  
John Lee

This study aimed to investigate the adjuvant effect of recombinant attenuatedSalmonellaexpressing cholera toxin B subunit (CTB) andEscherichia coliheat-labile enterotoxin B subunit (LTB) for the P-fimbriae subunit-based vaccine of avian pathogenicE. coli(APEC) in a murine model. The PapA-specific sIgA and IgG responses were significantly enhanced after immunisation with theSalmonella-PapA vaccine in the presence of CTB or LTB. The group immunised with theSalmonella-LTB strain promoted Th1-type immunity, whereas that immunised with theSalmonella-CTB strain produced Th2-type immunity. We concluded that bothSalmonella-CTB and -LTB strains can enhance the immune response to PapA, and that the LTB strain may be a more effective adjuvant for APEC vaccination, which requires higher Th1-type immunity for protection. Thus, our findings provide evidence that immunisation with an adjuvant, LTB, is one of the strategies of developing effective vaccines against P-fimbriated APEC.


Vaccine ◽  
2009 ◽  
Vol 27 (32) ◽  
pp. 4289-4296 ◽  
Author(s):  
Caleb G. Chen ◽  
Yen-Ta Lu ◽  
Marie Lin ◽  
Natalia Savelyeva ◽  
Freda K. Stevenson ◽  
...  

2016 ◽  
Vol 473 (21) ◽  
pp. 3923-3936 ◽  
Author(s):  
Dani Zalem ◽  
João P. Ribeiro ◽  
Annabelle Varrot ◽  
Michael Lebens ◽  
Anne Imberty ◽  
...  

The structurally related AB5-type heat-labile enterotoxins of Escherichia coli and Vibrio cholerae are classified into two major types. The type I group includes cholera toxin (CT) and E. coli LT-I, whereas the type II subfamily comprises LT-IIa, LT-IIb and LT-IIc. The carbohydrate-binding specificities of LT-IIa, LT-IIb and LT-IIc are distinctive from those of cholera toxin and E. coli LT-I. Whereas CT and LT-I bind primarily to the GM1 ganglioside, LT-IIa binds to gangliosides GD1a, GD1b and GM1, LT-IIb binds to the GD1a and GT1b gangliosides, and LT-IIc binds to GM1, GM2, GM3 and GD1a. These previous studies of the binding properties of type II B-subunits have been focused on ganglio core chain gangliosides. To further define the carbohydrate binding specificity of LT-IIb B-subunits, we have investigated its binding to a collection of gangliosides and non-acid glycosphingolipids with different core chains. A high-affinity binding of LT-IIb B-subunits to gangliosides with a neolacto core chain, such as Neu5Gcα3- and Neu5Acα3-neolactohexaosylceramide, and Neu5Gcα3- and Neu5Acα3-neolactooctaosylceramide was detected. An LT-IIb-binding ganglioside was isolated from human small intestine and characterized as Neu5Acα3-neolactohexaosylceramide. The crystal structure of the B-subunit of LT-IIb with the pentasaccharide moiety of Neu5Acα3-neolactotetraosylceramide (Neu5Ac-nLT: Neu5Acα3Galβ4GlcNAcβ3Galβ4Glc) was determined providing the first information for a sialic-binding site in this subfamily, with clear differences from that of CT and LT-I.


Sign in / Sign up

Export Citation Format

Share Document