adjuvant effect
Recently Published Documents


TOTAL DOCUMENTS

546
(FIVE YEARS 98)

H-INDEX

52
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Akitsu Masuda ◽  
Jae Man Lee ◽  
Takeshi Miyata ◽  
Hiroaki Mon ◽  
Keita Sato ◽  
...  

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a spread of coronavirus disease 2019 (COVID-19) globally. In order to end the COVID-19 pandemic, an effective vaccine against SARS-CoV-2 must be produced at low cost and disseminated worldwide. The spike (S) protein of coronaviruses plays a pivotal role in the infection to host cells. Therefore, targeting the S protein is one of the most rational approaches in developing vaccines and therapeutic agents. In this study, we optimized the expression of secreted trimerized S protein of SARS-CoV-2 using a silkworm-baculovirus expression vector system and evaluated its immunogenicity in mice. The results showed that the S protein forming the trimeric structure was the most stable when the chicken cartilage matrix protein was used as the trimeric motif and could be purified in large amounts from the serum of silkworm larvae. The purified S protein efficiently induced antigen-specific antibodies in mouse serum without adjuvant, but its ability to induce neutralizing antibodies was low. After examining several adjuvants, the use of Alum adjuvant was the most effective in inducing strong neutralizing antibody induction. We also examined the adjuvant effect of paramylon from Euglena gracilis when administered with the S protein. Our results highlight the effectiveness and suitable construct design of the S protein produced in silkworms for the subunit vaccine development against SARS-CoV-2.


2022 ◽  
Author(s):  
Carmela Gallo ◽  
Emiliano Manzo ◽  
Giusi Barra ◽  
Laura Fioretto ◽  
Marcello Ziaco ◽  
...  

Abstract The immune response arises from a fine balance of cellular and molecular mechanisms that provide for surveillance, tolerance, and elimination of dangers as pathogens. Improving the quality of the immune response remains a major goal in immunotherapy and vaccine development. Sulfavant A (SULF A) is a sulfolipid that has shown promising adjuvant activity in a cancer vaccine model. Here we report that SULF A is the first synthetic small molecule binding to the Triggering Receptor Expressed on Myeloid cells-2 (TREM2). The receptor engagement initiates an unconventional maturation of Dendritic cells (DCs) leading to upregulation of the Major Histocompatibility Complex class II (MHC Class II) and costimulatory molecules (CD83, CD86, DC54) without release of T helper type 1 (Th1) or 2 (Th2) cytokines. According to a TREM2 mechanism, this response is mediated by SYK-NFAT axis and is compromised by blockade and gene silencing of the receptor. Activation by SULF A preserved the DC functions to excite the allogeneic T cell response, and induced interleukin-10 (IL-10) release after lipopolysaccharide (LPS) stimulation. These results well support the adjuvant effect of SULF A and offer novel insights into the role of TREM2 in the differentiation of an unprecedented DC phenotype (homeDCs) that contributes to the maintenance of immune homeostasis without compromising lymphocyte activation and immunogenic response. The biological function of SULF-A may be of interest in various physiological and pathological processes involving the immune system.


2022 ◽  
Vol 16 ◽  
pp. 117822342110651
Author(s):  
Servin-Garrido Roberto Raúl ◽  
Ilhuicatzi-Alvarado Damaris ◽  
Jiménez-Chávez Ángel de Jesús ◽  
Moreno-Fierros Leticia

The Cry1Ac protoxin from Bacillus thuringiensis is a systemic and mucosal adjuvant, able to confer protective immunity in different infection murine models and induce both Th1 and TCD8+ cytotoxic lymphocyte responses, which are required to induce antitumor immunity. The Cry1Ac toxin, despite having not being characterized as an adjuvant, has also proved to be immunogenic and able to activate macrophages. Here, we investigated the potential antitumor adjuvant effect conferred by the Cry1Ac protoxin and Cry1Ac toxin in a triple negative breast cancer (TNBC) murine model. First, we evaluated the ability of Cry1Ac proteins to improve dendritic cell (DC) activation and cellular response through intraperitoneal (i.p.) coadministration with the 4T1 cellular lysate. Mice coadministered with the Cry1Ac protoxin showed an increase in the number and activation of CD11c+MHCII- and CD11c+MHCII+low in the peritoneal cavity and an increase in DC activation (CD11c+MHCII+) in the spleen. Cry1Ac protoxin increased the proliferation of TCD4+ and TCD8+ lymphocytes in the spleen and mesenteric lymph nodes (MLN), while the Cry1Ac toxin only increased the proliferation of TCD4+ and TCD8+ in the MLN. Remarkably, when tested in the in vivo TNBC mouse model, prophylactic immunizations with 4T1 lysates plus the Cry1Ac protoxin protected mice from developing tumors. The antitumor effect conferred by the Cry1Ac protoxin also increased specific cytotoxic T cell responses, and prevented the typical tumor-related decrease of T cells (TCD3+ and TCD4+) as well the increase of myeloid-derived suppressor cells (MDSC) in spleen. Also in the tumor microenvironment of mice coadministered twice with Cry1Ac protoxin immunological improvements were found such as reductions in immunosupressive populations (T regulatory lymphocytes and MDSC) along with increases in macrophages upregulating CD86. These results show a differential antitumor adjuvant capability of Cry1Ac proteins, highlighting the ability of Cry1Ac protoxin to enhance local and systemic tumor immunity in TNBC. Finally, using a therapeutic approach, we evaluated the coadministration of Cry1Ac protoxin with doxorubicin. A significant reduction in tumor volume and lung metastasis was found, with increased intratumoral levels of tumor necrosis factor-α and IL-6 with respect to the vehicle group, further supporting its antitumor applicability.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 876
Author(s):  
María Alejandrina Martínez-González ◽  
Luis Manuel Peña-Rodríguez ◽  
Andrés Humberto Uc-Cachón ◽  
Jorge Bórquez ◽  
Mario J. Simirgiotis ◽  
...  

Tuberculosis causes more than 1.2 million deaths each year. Worldwide, it is the first cause of death by a single infectious agent. The emergence of drug-resistant strains has limited pharmacological treatment of the disease and today, new drugs are urgently needed. Semi-synthetic mulinanes have previously shown important activity against multidrug-resistant (MDR) Mycobacterium tuberculosis. In this investigation, a new set of semi-synthetic mulinanes were synthetized, characterized, and evaluated for their in vitro activity against three drug-resistant clinical isolates of M. tuberculosis: MDR, pre-extensively Drug-Resistant (pre-XDR), and extensively Drug-Resistant (XDR), and against the drug-susceptible laboratory reference strain H37Rv. Derivative 1a showed the best anti-TB activity (minimum inhibitory concentration [MIC] = 5.4 µM) against the susceptible strain and was twice as potent (MIC = 2.7 µM) on the MDR, pre-XDR, and XDR strains and also possessed a bactericidal effect. Derivative 1a was also tested for its anti-TB activity in mice infected with the MDR strain. In this case, 1a produced a significant reduction of pulmonary bacilli loads, six times lower than the control, when tested at 0.2536 mg/Kg. In addition, 1a demonstrated an adjuvant effect by shortening second-line chemotherapy. Finally, the selectivity index of >15.64 shown by 1a when tested on Vero cells makes this derivative an important candidate for future studies in the development of novel antitubercular agents.


2021 ◽  
Vol 22 (22) ◽  
pp. 12339
Author(s):  
Sara Nava ◽  
Daniela Lisini ◽  
Simona Frigerio ◽  
Anna Bersano

Dendritic cells (DCs) are immune specialized cells playing a critical role in promoting immune response against antigens, and may represent important targets for therapeutic interventions in cancer. DCs can be stimulated ex vivo with pro-inflammatory molecules and loaded with tumor-specific antigen(s). Protocols describing the specific details of DCs vaccination manufacturing vary widely, but regardless of the employed protocol, the DCs vaccination safety and its ability to induce antitumor responses is clearly established. Many years of studies have focused on the ability of DCs to provide overall survival benefits at least for a selection of cancer patients. Lessons learned from early trials lead to the hypothesis that, to improve the efficacy of DCs-based immunotherapy, this should be combined with other treatments. Thus, the vaccine's ultimate role may lie in the combinatorial approaches of DCs-based immunotherapy with chemotherapy and radiotherapy, more than in monotherapy. In this review, we address some key questions regarding the integration of DCs vaccination with multimodality therapy approaches for cancer treatment paradigms.


2021 ◽  
Author(s):  
Quntao Huang ◽  
Tian-Ming Niu ◽  
Bo-Shi Zou ◽  
Jun-Hong Wang ◽  
Jun-Hong Xin ◽  
...  

Abstract The African Classical Swine Fever Virus (ASFV) has spread severely all over the world. The lack of vaccines has dealt a heavy blow to the pig industry.In this study, the p14.5 protein encoded by the African swine fever virus was used as the antigen, and the p14.5 protein gene was expressed in vitro using the Lactobacillus expression system. Three new functional recombinant Lactobacillus plantarum((L. plantarum) were constructed and the p14.5 was successfully detected using western technology.Protein, fusion gene p14.5-IL-33-mouse(P14.5-IL-33-Mus) protein and CTA1-p14.5-DD protein expression.After oral immunization of SPF mice with recombinant lactic acid bacteria, flow cytometry and ELISA were used to detect that the differentiation and maturity of T, B, and DC cells of the mice were higher than those of the control group, and specific antibodies were produced. In contrast, the immune effect of the adjuvant group was stronger than that of the single antigen group, and the IL-33 adjuvant effect was stronger than that of the CTA1-DD adjuvant. This study provides effective data support for the prevention of African swine fever virus infection with new lactic acid bacteria preparations, and has certain innovative significance.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3936
Author(s):  
Mamdooh Ghoneum ◽  
Shaymaa Abdulmalek

The potential of KDP, a lactic acid bacterial strain of Lactobacillus sakei, to enhance the production of mucosal specific immunoglobulin A (IgA) in mice and thereby enhance gut mucosal immunity was examined. KDP is composed of dead cells isolated from the Korean traditional food kimchi. Female BALB/c mice orally received 0.25 mg KDP once daily for 5 weeks and were co-administrated ovalbumin (OVA) for negative control and cholera toxin for positive control. Mice administered KDP exhibited increased secretory IgA (sIgA) contents in the small intestine, Peyer’s patches, serum, colon, and lungs as examined by ELISA. KDP also significantly increased the gene expression of Bcl-6, IL-10, IL-12p40, IL-21, and STAT4. In addition, KDP acted as a potent antioxidant, as indicated by its significant inhibitory effects in the range of 16.5–59.4% for DPPH, nitric oxide, maximum total antioxidant capacity, and maximum reducing power. Finally, KDP exhibited potent antimicrobial activity as evidenced by a significant decrease in the growth of 7 samples of gram-negative and gram-positive bacteria and Candida albicans. KDP’s adjuvant effect is shown to be comparable to that of cholera toxin. We conclude that KDP can significantly enhance the intestine’s secretory immunity to OVA, as well as act as a potent antioxidant and antimicrobial agent. These results suggest that orally administered KDP should be studied in clinical trials for antigen-specific IgA production.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6294
Author(s):  
Atsushi Shimoyama ◽  
Koichi Fukase

Gram-negative bacterial cell surface component lipopolysaccharide (LPS) and its active principle, lipid A, exhibit immunostimulatory effects and have the potential to act as adjuvants. However, canonical LPS acts as an endotoxin by hyperstimulating the immune response. Therefore, LPS and lipid A must be structurally modified to minimize their toxic effects while maintaining their adjuvant effect for application as vaccine adjuvants. In the field of chemical ecology research, various biological phenomena occurring among organisms are considered molecular interactions. Recently, the hypothesis has been proposed that LPS and lipid A mediate bacterial–host chemical ecology to regulate various host biological phenomena, mainly immunity. Parasitic and symbiotic bacteria inhabiting the host are predicted to possess low-toxicity immunomodulators due to the chemical structural changes of their LPS caused by co-evolution with the host. Studies on the chemical synthesis and functional evaluation of their lipid As have been developed to test this hypothesis and to apply them to low-toxicity and safe adjuvants.


Sign in / Sign up

Export Citation Format

Share Document