Scintillating fiber optics for X-ray radiation imaging

Author(s):  
Hua Shao ◽  
Don W. Miller ◽  
C.Robert Pearsall
Author(s):  
James F. Mancuso ◽  
William B. Maxwell ◽  
Russell E. Camp ◽  
Mark H. Ellisman

The imaging requirements for 1000 line CCD camera systems include resolution, sensitivity, and field of view. In electronic camera systems these characteristics are determined primarily by the performance of the electro-optic interface. This component converts the electron image into a light image which is ultimately received by a camera sensor.Light production in the interface occurs when high energy electrons strike a phosphor or scintillator. Resolution is limited by electron scattering and absorption. For a constant resolution, more energy deposition occurs in denser phosphors (Figure 1). In this respect, high density x-ray phosphors such as Gd2O2S are better than ZnS based cathode ray tube phosphors. Scintillating fiber optics can be used instead of a discrete phosphor layer. The resolution of scintillating fiber optics that are used in x-ray imaging exceed 20 1p/mm and can be made very large. An example of a digital TEM image using a scintillating fiber optic plate is shown in Figure 2.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Elena Basso ◽  
Federica Pozzi ◽  
Jessica Keister ◽  
Elizabeth Cronin

AbstractIn the late 19th and early 20th centuries, original photographs were sent to publishers so that they could be reproduced in print. The photographs often needed to be reworked with overpainting and masking, and such modifications were especially necessary for low-contrast photographs to be reproduced as a letterpress halftone. As altered objects, many of these marked-up photographs were simply discarded after use. An album at The New York Public Library, however, contains 157 such photographs, all relating to the Jackson–Harmsworth expedition to Franz Josef Land, from 1894 to 1897. Received as gifts from publishers, the photographs are heavily retouched with overpainting and masking, as well as drawn and collaged elements. The intense level of overpainting on many of the photographs, but not on others, raised questions about their production and alteration. Jackson’s accounts attested to his practice of developing and printing photographs on site, testing different materials and techniques—including platino-bromide and silver-gelatin papers—to overcome the harsh environmental conditions. In this context, sixteen photographs from the album were analyzed through a combination of non-invasive and micro-invasive techniques, including X-ray fluorescence (XRF) spectroscopy, fiber optics reflectance spectroscopy (FORS), Raman and Fourier-transform infrared (FTIR) spectroscopies, and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDS). This analytical campaign aimed to evaluate the possible residual presence of silver halides in any of the preliminary and improved photographs. The detection of these compounds would be one of several factors supporting a hypothesis that some of the photographs in the album were indeed printed on site, in the Arctic, and, as a result, may have been impacted by the extreme environment. Additional goals of the study included the evaluation of the extent of retouching, providing a full characterization of the pigments and dyes used in overpainted prints, and comparing the results with contemporaneous photographic publications that indicate which coloring materials were available at the time. Further analyses shed light on the organic components present in the binders and photographic emulsions. This research has increased our knowledge of photographic processes undertaken in a hostile environment such as the Arctic, and shed light on the technical aspects of photographically illustrating books during the late 19th and early 20th centuries.


1987 ◽  
Author(s):  
E. Bigler ◽  
F. Polack ◽  
S. Lowenthal

2021 ◽  
Vol 7 (1) ◽  
pp. 14
Author(s):  
Dewi Suriyani Che Halin ◽  
Kamrosni Abdul Razak ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Mohd Izrul Izwan Ramli ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

Ag/TiO2 thin films were prepared using the sol-gel spin coating method. The microstructural growth behaviors of the prepared Ag/TiO2 thin films were elucidated using real-time synchrotron radiation imaging, its structure was determined using grazing incidence X-ray diffraction (GIXRD), its morphology was imaged using the field emission scanning electron microscopy (FESEM), and its surface topography was examined using the atomic force microscope (AFM) in contact mode. The cubical shape was detected and identified as Ag, while the anatase, TiO2 thin film resembled a porous ring-like structure. It was found that each ring that coalesced and formed channels occurred at a low annealing temperature of 280 °C. The energy dispersive X-ray (EDX) result revealed a small amount of Ag presence in the Ag/TiO2 thin films. From the in-situ synchrotron radiation imaging, it was observed that as the annealing time increased, the growth of Ag/TiO2 also increased in terms of area and the number of junctions. The growth rate of Ag/TiO2 at 600 s was 47.26 µm2/s, and after 1200 s it decreased to 11.50 µm2/s and 11.55 µm2/s at 1800 s. Prolonged annealing will further decrease the growth rate to 5.94 µm2/s, 4.12 µm2/s and 4.86 µm2/s at 2400 s, 3000 s and 3600 s, respectively.


2021 ◽  
Author(s):  
Yuting Xu ◽  
Zhifang Wu ◽  
Qiang Wang

Abstract Radiation imaging, as a key issue in nuclear technology, has received considerable attention in the industry. It is widely used in nuclear medicine, Customs supervision, and many other areas. The objective of this investigation is to get insight into the principle, operation characteristics and image characteristics of radiation imaging. In this paper, an investigation on radiation imaging is conducted on three main inspection systems for Customs supervision, including small X-ray inspection machine, CT baggage inspection system, and large container inspection system. The principle, operation characteristics, evaluation indexes, pseudo-color processing and image characteristics are discussed in detail. The results indicate that the spatial resolution of small X-ray inspection machine is much higher than that of CT baggage/goods inspection system and large container/vehicle inspection system. It is a challenge to identify substances and specific shapes in the case of overlapping for small X-ray inspection system. Moreover, the mechanism of X-ray images is discussed as well. The radiation images are divided into three types, including two-dimensional, pseudo-color, high spatial resolution; two-dimensional, gray, high spatial resolution; three-dimensional, pseudo-color, high density resolution. The further investigation on machine inspection images is suggested to focus on the application environment. For some objects with specific characteristics, such as amorphous, explosive, the CT baggage inspection has much better performance than other systems. The research in this paper reveals the mechanism, parametric effect and imaging characteristics. It could provide a necessary foundation for the follow-up intelligent processing, detection, identification and annotation for radiation imaging in nuclear area. The research on inspection devices could lend strong experience to medical treatment, industry and many other fields.


Author(s):  
Hugo Simoes ◽  
Rui Ferreira Marques ◽  
Paulo J.B.M. Rachinhas ◽  
Andreas Wagner ◽  
Paulo Crespo

1962 ◽  
Vol 71 (8) ◽  
pp. 585-590 ◽  
Author(s):  
J. S. Courtney-Pratt ◽  
J. W. McLaughlin ◽  
E. C. Schramm ◽  
Heinz Alberti
Keyword(s):  

2019 ◽  
Vol 146 ◽  
pp. 1039-1042
Author(s):  
Maryna Chernyshova ◽  
Karol Malinowski ◽  
Tomasz Czarski ◽  
Ewa Kowalska-Strzęciwilk ◽  
Paweł Linczuk ◽  
...  
Keyword(s):  
X Ray ◽  

1966 ◽  
Vol 9 (5) ◽  
pp. 194-195 ◽  
Author(s):  
L. Marton
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document