Aspects of neural plasticity in the central nervous system—IV. Chemical anatomical studies on the aging brain

1990 ◽  
Vol 16 (4) ◽  
pp. 437-449 ◽  
Author(s):  
M ZOLI ◽  
F BENFENATI ◽  
E PICH ◽  
G TOFFANO ◽  
K FUXE ◽  
...  
2020 ◽  
Vol 21 (6) ◽  
pp. 2010 ◽  
Author(s):  
Maria Rosaria Rizzo ◽  
Renata Fasano ◽  
Giuseppe Paolisso

Adiponectin (ADPN) is a plasma protein secreted by adipose tissue showing pleiotropic effects with anti-diabetic, anti-atherogenic, and anti-inflammatory properties. Initially, it was thought that the main role was only the metabolism control. Later, ADPN receptors were also found in the central nervous system (CNS). In fact, the receptors AdipoR1 and AdipoR2 are expressed in various areas of the brain, including the hypothalamus, hippocampus, and cortex. While AdipoR1 regulates insulin sensitivity through the activation of the AMP-activated protein kinase (AMPK) pathway, AdipoR2 stimulates the neural plasticity through the activation of the peroxisome proliferator-activated receptor alpha (PPARα) pathway that inhibits inflammation and oxidative stress. Overall, based on its central and peripheral actions, ADPN appears to have neuroprotective effects by reducing inflammatory markers, such as C-reactive protein (PCR), interleukin 6 (IL6), and Tumor Necrosis Factor a (TNFa). Conversely, high levels of inflammatory cascade factors appear to inhibit the production of ADPN, suggesting bidirectional modulation. In addition, ADPN appears to have insulin-sensitizing action. It is known that a reduction in insulin signaling is associated with cognitive impairment. Based on this, it is of great interest to investigate the mechanism of restoration of the insulin signal in the brain as an action of ADPN, because it is useful for testing a possible pharmacological treatment for the improvement of cognitive decline. Anyway, if ADPN regulates neuronal functioning and cognitive performances by the glycemic metabolic system remains poorly explored. Moreover, although the mechanism is still unclear, women compared to men have a doubled risk of developing cognitive decline. Several studies have also supported that during the menopausal transition, the estrogen reduction can adversely affect the brain, in particular, verbal memory and verbal fluency. During the postmenopausal period, in obese and insulin-resistant individuals, ADPN serum levels are significantly reduced. Our recent study has evaluated the relationship between plasma ADPN levels and cognitive performances in menopausal women. Thus, the aim of this review is to summarize both the mechanisms and the effects of ADPN in the central nervous system and the relationship between plasma ADPN levels and cognitive performances, also in menopausal women.


2019 ◽  
Vol 225 (1) ◽  
pp. 321-344 ◽  
Author(s):  
Andrea Hunyadi ◽  
Botond Gaál ◽  
Clara Matesz ◽  
Zoltan Meszar ◽  
Markus Morawski ◽  
...  

AbstractExtracellular matrix (ECM) became an important player over the last few decades when studying the plasticity and regeneration of the central nervous system. In spite of the established role of ECM in these processes throughout the central nervous system (CNS), only few papers were published on the ECM of the olfactory system, which shows a lifelong plasticity, synaptic remodeling and postnatal neurogenesis. In the present study, we have described the localization and organization of major ECM molecules, the hyaluronan, the lecticans, tenascin-R and HAPLN1 link protein in the olfactory bulb (OB) of the rat. We detected all of these molecules in the OB showing differences in the molecular composition, staining intensity, and organization of ECM between the layers and in some cases within a single layer. One of the striking features of ECM staining pattern in the OB was that the reactions are shown dominantly in the neuropil, the PNNs were found rarely and they exhibited thin or diffuse appearance Similar organization was shown in human and mice samples. As the PNN limits the neural plasticity, its rare appearance may be related to the high degree of plasticity in the OB.


2020 ◽  
Vol V (2) ◽  
pp. 1-52
Author(s):  
B. I. Vorotynsky

The first foundations of our knowledge about the structure of the spinal cord were laid by the pathological and anatomical studies of Trck, who studied the sequential changes in the spinal cord, which followed after various lesions of the spinal cord, and in this way received data from the included systems of very different according to the structure of the central nervous system, which is the spinal cord.


Sign in / Sign up

Export Citation Format

Share Document