A single-channel, double-viewing angle method for sea surface temperature determination from coincident METEOSAT and TIROS-N radiometric measurements

1982 ◽  
Vol 29 (12) ◽  
pp. 749
2019 ◽  
Vol 11 (20) ◽  
pp. 2393 ◽  
Author(s):  
R.F. Vincent

Surface temperatures derived from satellite thermal infrared (TIR) data are critical inputs for assessing climate change in polar environments. Sea and ice surface temperature (SST, IST) are commonly determined with split window algorithms that use the brightness temperature from the 11 μm channel (BT11) as the main estimator and the difference between BT11 and the 12 μm channel (BTD11–12) to correct for atmospheric water vapor absorption. An issue with this paradigm in the Arctic maritime environment is the occurrence of high BTD11–12 that is not indicative of atmospheric absorption of BT11 energy. The Composite Arctic Sea Surface Temperature Algorithm (CASSTA) considers three regimes based on BT11 pixel value: seawater, ice, and marginal ice zones. A single channel (BT11) estimator is used for SST and a split window algorithm for IST. Marginal ice zone temperature is determined with a weighted average between the SST and IST. This study replaces the CASSTA split window IST with a single channel (BT11) estimator to reduce errors associated with BTD11–12 in the split window algorithm. The single channel IST returned improved results in the CASSTA dataset with a mean average error for ice and marginal ice zones of 0.142 K and 0.128 K, respectively.


2020 ◽  
Vol 12 (20) ◽  
pp. 3369 ◽  
Author(s):  
Peter J. Minnett ◽  
Katherine A. Kilpatrick ◽  
Guillermo P. Podestá ◽  
Robert H. Evans ◽  
Malgorzata D. Szczodrak ◽  
...  

Retrievals of skin Sea-Surface Temperature (SSTskin) from the measurements of the Visible Infrared Imaging Radiometer Suite on the Suomi-National Polar-orbiting Partnership satellite are presented and discussed. The algorithms used to derive the SSTskin from the radiometric measurements are given in detail. A number of approaches to assess the accuracy and stability of the Visible Infrared Imaging Radiometer Suite (VIIRS) SSTskin retrievals are reported, and factors including latitude and season, and physical processes in the atmosphere and at the surface are discussed. We conclude that the Suomi National Polar-orbiting Partnership (S-NPP) VIIRS is capable of matching and improving upon the accuracies of SSTskin from the MODISs on Terra and Aqua, and that the VIIRS SSTskin fields have the potential to contribute to the extension of the satellite-derived Climate Data Records of SST into the future.


Sign in / Sign up

Export Citation Format

Share Document