A boundary-layer analysis of Rayleigh-Bénard convection at large Rayleigh number

1987 ◽  
Vol 34 (12) ◽  
pp. 1059
2010 ◽  
Vol 664 ◽  
pp. 297-312 ◽  
Author(s):  
QUAN ZHOU ◽  
RICHARD J. A. M. STEVENS ◽  
KAZUYASU SUGIYAMA ◽  
SIEGFRIED GROSSMANN ◽  
DETLEF LOHSE ◽  
...  

The shapes of the velocity and temperature profiles near the horizontal conducting plates' centre regions in turbulent Rayleigh–Bénard convection are studied numerically and experimentally over the Rayleigh number range 108 ≲ Ra ≲ 3 × 1011 and the Prandtl number range 0.7 ≲ Pr ≲ 5.4. The results show that both the temperature and velocity profiles agree well with the classical Prandtl–Blasius (PB) laminar boundary-layer profiles, if they are re-sampled in the respective dynamical reference frames that fluctuate with the instantaneous thermal and velocity boundary-layer thicknesses. The study further shows that the PB boundary layer in turbulent thermal convection not only holds in a time-averaged sense, but is most of the time also valid in an instantaneous sense.


2014 ◽  
Vol 758 ◽  
pp. 344-373 ◽  
Author(s):  
Janet D. Scheel ◽  
Jörg Schumacher

AbstractWe compute fully local boundary layer scales in three-dimensional turbulent Rayleigh–Bénard convection. These scales are directly connected to the highly intermittent fluctuations of the fluxes of momentum and heat at the isothermal top and bottom walls and are statistically distributed around the corresponding mean thickness scales. The local boundary layer scales also reflect the strong spatial inhomogeneities of both boundary layers due to the large-scale, but complex and intermittent, circulation that builds up in closed convection cells. Similar to turbulent boundary layers, we define inner scales based on local shear stress that can be consistently extended to the classical viscous scales in bulk turbulence, e.g. the Kolmogorov scale, and outer scales based on slopes at the wall. We discuss the consequences of our generalization, in particular the scaling of our inner and outer boundary layer thicknesses and the resulting shear Reynolds number with respect to the Rayleigh number. The mean outer thickness scale for the temperature field is close to the standard definition of a thermal boundary layer thickness. In the case of the velocity field, under certain conditions the outer scale follows a scaling similar to that of the Prandtl–Blasius type definition with respect to the Rayleigh number, but differs quantitatively. The friction coefficient $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}c_{\epsilon }$ scaling is found to fall right between the laminar and turbulent limits, which indicates that the boundary layer exhibits transitional behaviour. Additionally, we conduct an analysis of the recently suggested dissipation layer thickness scales versus the Rayleigh number and find a transition in the scaling. All our investigations are based on highly accurate spectral element simulations that reproduce gradients and their fluctuations reliably. The study is done for a Prandtl number of $\mathit{Pr}=0.7$ and for Rayleigh numbers that extend over almost five orders of magnitude, $3\times 10^5\le \mathit{Ra} \le 10^{10}$, in cells with an aspect ratio of one. We also performed one study with an aspect ratio equal to three in the case of $\mathit{Ra}=10^8$. For both aspect ratios, we find that the scale distributions depend on the position at the plates where the analysis is conducted.


2012 ◽  
Vol 711 ◽  
pp. 281-305 ◽  
Author(s):  
J. D. Scheel ◽  
E. Kim ◽  
K. R. White

AbstractWe present the results from numerical simulations of turbulent Rayleigh–Bénard convection for an aspect ratio (diameter/height) of 1.0, Prandtl numbers of 0.4 and 0.7, and Rayleigh numbers from $1\ensuremath{\times} 1{0}^{5} $ to $1\ensuremath{\times} 1{0}^{9} $. Detailed measurements of the thermal and viscous boundary layer profiles are made and compared to experimental and theoretical (Prandtl–Blasius) results. We find that the thermal boundary layer profiles disagree by more than 10 % when scaled with the similarity variable (boundary layer thickness) and likewise disagree with the Prandtl–Blasius results. In contrast, the viscous boundary profiles collapse well and do agree (within 10 %) with the Prandtl–Blasius profile, but with worsening agreement as the Rayleigh number increases. We have also investigated the scaling of the boundary layer thicknesses with Rayleigh number, and again compare to experiments and theory. We find that the scaling laws are very robust with respect to method of analysis and they mostly agree with the Grossmann–Lohse predictions coupled with laminar boundary layer theory within our numerical uncertainty.


1987 ◽  
Vol 178 ◽  
pp. 53-71 ◽  
Author(s):  
Javier Jimenez ◽  
Juan A. Zufiria

A boundary-layer analysis is presented for the two-dimensional nonlinear convection of an infinite-Prandtl-number fluid in a rectangular enclosure, in the limit of large Rayleigh numbers. Particular emphasis is given to the analysis of the periodic boundary layers, and on the removal of the singularities that appear near the corners of the cell. It is argued that this later step is necessary to ensure the correctness of the boundary-layer assumptions. Numerical values are obtained for the heat transfer and stress characteristics of the flow.


2017 ◽  
Vol 830 ◽  
Author(s):  
Pranav Joshi ◽  
Hadi Rajaei ◽  
Rudie P. J. Kunnen ◽  
Herman J. H. Clercx

This experimental study focuses on the effect of horizontal boundaries with pyramid-shaped roughness elements on the heat transfer in rotating Rayleigh–Bénard convection. It is shown that the Ekman pumping mechanism, which is responsible for the heat transfer enhancement under rotation in the case of smooth top and bottom surfaces, is unaffected by the roughness as long as the Ekman layer thickness $\unicode[STIX]{x1D6FF}_{E}$ is significantly larger than the roughness height $k$. As the rotation rate increases, and thus $\unicode[STIX]{x1D6FF}_{E}$ decreases, the roughness elements penetrate the radially inward flow in the interior of the Ekman boundary layer that feeds the columnar Ekman vortices. This perturbation generates additional thermal disturbances which are found to increase the heat transfer efficiency even further. However, when $\unicode[STIX]{x1D6FF}_{E}\approx k$, the Ekman boundary layer is strongly perturbed by the roughness elements and the Ekman pumping mechanism is suppressed. The results suggest that the Ekman pumping is re-established for $\unicode[STIX]{x1D6FF}_{E}\ll k$ as the faces of the pyramidal roughness elements then act locally as a sloping boundary on which an Ekman layer can be formed.


1988 ◽  
Vol 190 ◽  
pp. 451-469 ◽  
Author(s):  
D. R. Jenkins

The relationship between observations of cellular Rayleigh-Bénard convection using shadowgraphs and theoretical expressions for convection planforms is considered. We determine the shadowgraphs that ought to be observed if the convection is as given by theoretical expressions for roll, square or hexagonal planforms and compare them with actual experiments. Expressions for the planforms derived from linear theory, valid for low supercritical Rayleigh number, produce unambiguous shadowgraphs consisting of cells bounded by bright lines, which correspond to surfaces through which no fluid flows and on which the vertical component of velocity is directed downwards. Dark spots at the centre of cells, indicating regions of hot, rising fluid, are not accounted for by linear theory, but can be produced by adding higher-order terms, predominantly due to the temperature dependence of a material property of the fluid, such as its viscosity.


Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 283
Author(s):  
Laiyun Zheng ◽  
Bingxin Zhao ◽  
Jianqing Yang ◽  
Zhenfu Tian ◽  
Ming Ye

This paper studied the Rayleigh–Bénard convection in binary fluid mixtures with a strong Soret effect (separation ratio ψ = − 0.6 ) in a rectangular container heated uniformly from below. We used a high-accuracy compact finite difference method to solve the hydrodynamic equations used to describe the Rayleigh–Bénard convection. A stable traveling-wave convective state with periodic source defects (PSD-TW) is obtained and its properties are discussed in detail. Our numerical results show that the novel PSD-TW state is maintained by the Eckhaus instability and the difference between the creation and annihilation frequencies of convective rolls at the left and right boundaries of the container. In the range of Rayleigh number in which the PSD-TW state is stable, the period of defect occurrence increases first and then decreases with increasing Rayleigh number. At the upper bound of this range, the system transitions from PSD-TW state to another type of traveling-wave state with aperiodic and more dislocated defects. Moreover, we consider the problem with the Prandtl number P r ranging from 0.1 to 20 and the Lewis number L e from 0.001 to 1, and discuss the stabilities of the PSD-TW states and present the results as phase diagrams.


Sign in / Sign up

Export Citation Format

Share Document