binary fluid mixtures
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 15)

H-INDEX

35
(FIVE YEARS 2)

Author(s):  
Yue Chen ◽  
Wei Chen ◽  
Xiaosong Chen

Abstract In this article, we apply classical density functional theory to investigate the characteristics of depletion interaction in Lennard-Jones (LJ) binary fluid mixtures. First of all, in order to confirm the validity of our adopted density functional formalism, we calculate the radial distribution functions with theoretical approach and compare them with results obtained by molecular dynamics simu- lation. Then this approach is applied to the case of two colloids immersed in LJ solvent systems. We investigate the variation of depletion interaction with respect to the distance of two colloids in LJ binary systems. We find that depletion interaction may be attractive or repulsive, mostly depending on the bulk density of solvent and the temperature of binary system. For high bulk densities, the repulsive barrier of depletion force is remarkable when the total excluded volume of colloids touches each other and reaches a maximum. The height of repulsive barrier is related to the parameters of LJ potential and bulk density. Moreover, depletion force may exhibit attractive wells if the bulk density of solvent is low. The attractive well tends to appear when the surface-surface distance of colloids is half of the size of polymer and deepen with temperature lowering in a fixed bulk density. In contrast with the hard-spheres system, no oscillation of depletion potential around zero is observed.


2021 ◽  
Vol 42 (11) ◽  
Author(s):  
Monika Thol ◽  
Markus Richter

AbstractA literature review on experimental data for binary mixtures of methane and carbon dioxide with hydrocarbons up to n-hexadecane is presented. Based on these data, the extended corresponding states method, two entropy scaling approaches, and the friction theory are analyzed with respect to their capability of calculating viscosity values with increasing asymmetry of the binary mixture. It is shown that not only the viscosity model but also the underlying thermodynamic equation of state has a significant influence on the result of such calculations. Shortcomings are identified both in the experimental data and in the modeling approaches.


2021 ◽  
Vol 26 (1) ◽  
pp. 337-366
Author(s):  
Andrea Giorgini ◽  
◽  
Roger Temam ◽  
Xuan-Truong Vu ◽  

Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1208
Author(s):  
George Ruppeiner ◽  
Alex Seftas

The thermodynamic Ricci curvature scalar R has been applied in a number of contexts, mostly for systems characterized by 2D thermodynamic geometries. Calculations of R in thermodynamic geometries of dimension three or greater have been very few, especially in the fluid regime. In this paper, we calculate R for two examples involving binary fluid mixtures: a binary mixture of a van der Waals (vdW) fluid with only repulsive interactions, and a binary vdW mixture with attractive interactions added. In both of these examples, we evaluate R for full 3D thermodynamic geometries. Our finding is that basic physical patterns found for R in the pure fluid are reproduced to a large extent for the binary fluid.


Langmuir ◽  
2020 ◽  
Vol 36 (42) ◽  
pp. 12712-12722
Author(s):  
Thejas Hulikal Chakrapani ◽  
Wouter K. den Otter

Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 283
Author(s):  
Laiyun Zheng ◽  
Bingxin Zhao ◽  
Jianqing Yang ◽  
Zhenfu Tian ◽  
Ming Ye

This paper studied the Rayleigh–Bénard convection in binary fluid mixtures with a strong Soret effect (separation ratio ψ = − 0.6 ) in a rectangular container heated uniformly from below. We used a high-accuracy compact finite difference method to solve the hydrodynamic equations used to describe the Rayleigh–Bénard convection. A stable traveling-wave convective state with periodic source defects (PSD-TW) is obtained and its properties are discussed in detail. Our numerical results show that the novel PSD-TW state is maintained by the Eckhaus instability and the difference between the creation and annihilation frequencies of convective rolls at the left and right boundaries of the container. In the range of Rayleigh number in which the PSD-TW state is stable, the period of defect occurrence increases first and then decreases with increasing Rayleigh number. At the upper bound of this range, the system transitions from PSD-TW state to another type of traveling-wave state with aperiodic and more dislocated defects. Moreover, we consider the problem with the Prandtl number P r ranging from 0.1 to 20 and the Lewis number L e from 0.001 to 1, and discuss the stabilities of the PSD-TW states and present the results as phase diagrams.


Sign in / Sign up

Export Citation Format

Share Document