Induction of pneumococcal polysaccharide-specific mucosal immune responses by oral immunization

Vaccine ◽  
1996 ◽  
Vol 14 (5) ◽  
pp. 392-398 ◽  
Author(s):  
John L. VanCott ◽  
Toshiya Kobayashi ◽  
Masafumi Yamamoto ◽  
Subramonia Pillai ◽  
Jerry R. McGhee ◽  
...  
2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Jialu Wang ◽  
Lulu Huang ◽  
Chunxiao Mou ◽  
En Zhang ◽  
Yongheng Wang ◽  
...  

Abstract Porcine epidemic diarrhea (PED) is a highly contagious disease in newborn piglets and causes substantial economic losses in the world. PED virus (PEDV) spreads by fecal–oral contact and can be prevented by oral immunization. Therefore, it is necessary to develop an effective oral vaccine against PEDV infection. Currently, Bacillus subtilis as recombinant vaccine carrier has been used for antigen delivery and proved well in immune effect and safety. The present study evaluated the immunogenicity of recombinant Bacillus subtilis (B. subtilis-RC) in piglets via oral administration. After oral immunization in piglets, B. subtilis-RC significantly increased the local mucosal immune responses. Oral administration with B. subtilis-RC significantly improved the level of specific mucosal immunoglobulin A (IgA) antibodies against PEDV infection, through enlarging the area of Peyer’s patches (PPs) and increasing the number of ileum IgA+ secreting (SIgA) cells. In the meantime, B. subtilis-RC remarkably increased the number of intraepithelial lymphocytes (IELs). We also observed that oral administration of B. subtilis-RC significantly increased CD3+T lymphocytes’ numbers and up-regulated the ratio of CD4+/CD8+ T cells. Furthermore, high titers of specific serum immunoglobulin G (IgG) revealed satisfactory systemic immune response against PEDV infection. In summary, our study demonstrated that oral administration of B. subtilis-RC could trigger a high level of local and systemic immune responses and would be a promising candidate vaccine against PEDV infection in piglets.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 23 ◽  
Author(s):  
Mohammad Omer Faruck ◽  
Lili Zhao ◽  
Waleed M. Hussein ◽  
Zeinab G. Khalil ◽  
Robert J. Capon ◽  
...  

Group A Streptococcus (GAS)-associated rheumatic heart disease is a leading cause of death caused by GAS infection. While antibiotics can treat the infection in most cases, growing antibiotic resistance, late medical intervention, and recurrent infection are major obstacles to the effective treatment of GAS-associated diseases. As GAS infection typically originates from the bacterial colonization of mucosal tissue in the throat, an oral vaccine that can generate both systemic and mucosal immune responses would solve problems associated with traditional medical interventions. Moreover, orally delivered vaccines are more easily administered and less expensive for mass immunization. In this study, the B-cell epitope J8, derived from GAS M protein, and universal T-helper Pan HLA-DR-binding epitope peptide (PADRE), were conjugated to poly (methyl acrylate) (PMA) to form a self-assembled nanoparticle vaccine candidate (PMA-P-J8). Strong systemic and mucosal immune responses were induced upon single oral immunization of mice with the conjugate. The antibodies generated were opsonic against GAS clinical isolates as measured after boost immunization. Thus, we developed a simple conjugate as an effective, adjuvant-free oral peptide-based vaccine.


Sign in / Sign up

Export Citation Format

Share Document