antigen delivery
Recently Published Documents


TOTAL DOCUMENTS

608
(FIVE YEARS 140)

H-INDEX

62
(FIVE YEARS 8)

Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 7
Author(s):  
Dianzhong Zheng ◽  
Xiaona Wang ◽  
Ning Ju ◽  
Zhaorui Wang ◽  
Ling Sui ◽  
...  

Porcine epidemic diarrhea (PED) induced by porcine epidemic diarrhea virus (PEDV) is an intestinal infectious disease in pigs that causes serious economic losses to the pig industry. To develop an effective oral vaccine against PEDV infection, we used a swine-origin Lactobacillus johnsonii (L. johnsonii) as an antigen delivery carrier. A recombinant strain pPG-T7g10-COE/L. johnsonii (L. johnsonii-COE) expressing COE protein (a neutralizing epitope of the viral spike protein) was generated. The immunomodulatory effect on dendritic cell in vitro and immunogenicity in pregnant sows was evaluated following oral administration. L. johnsonii-COE could activate monocyte-derived dendritic cell (MoDC) maturation and triggered cell immune responses. After oral vaccination with L. johnsonii-COE, levels of anti-PEDV-specific serum IgG, IgA, and IgM antibodies as well as mucosal secretory immunoglobulin A (SIgA) antibody were induced in pregnant sows. High levels of PEDV-specific SIgA and IgG antibodies were detected in the maternal milk, which provide effective protection for the piglets against PEDV infection. In summary, oral L. johnsonii-COE was able to efficiently activate anti-PEDV humoral and cellular immune responses, demonstrating potential as a vaccine for use in sows to provide protection of their piglets against PEDV.


Author(s):  
Hong-Chao Sun ◽  
Jing Huang ◽  
Yuan Fu ◽  
Li-Li Hao ◽  
Xin Liu ◽  
...  

Toxoplasma gondii infects almost all warm-blooded animals, including humans. DNA vaccines are an effective strategy against T. gondii infection, but these vaccines have often been poorly immunogenic due to the poor distribution of plasmids or degradation by lysosomes. It is necessary to evaluate the antigen delivery system for optimal vaccination strategy. Nanoparticles (NPs) have been shown to modulate and enhance the cellular humoral immune response. Here, we studied the immunological properties of calcium phosphate nanoparticles (CaPNs) as nanoadjuvants to enhance the protective effect of T. gondii dense granule protein (GRA7). BALB/c mice were injected three times and then challenged with T. gondii RH strain tachyzoites. Mice vaccinated with GRA7-pEGFP-C2+nano-adjuvant (CaPNs) showed a strong cellular immune response, as monitored by elevated levels of anti-T. gondii-specific immunoglobulin G (IgG), a higher IgG2a-to-IgG1 ratio, elevated interleukin (IL)-12 and interferon (IFN)-γ production, and low IL-4 levels. We found that a significantly higher level of splenocyte proliferation was induced by GRA7-pEGFP-C2+nano-adjuvant (CaPNs) immunization, and a significantly prolonged survival time and decreased parasite burden were observed in vaccine-immunized mice. These data indicated that CaPN-based immunization with T. gondii GRA7 is a promising approach to improve vaccination.


2021 ◽  
Vol 21 (4) ◽  
pp. 234-243
Author(s):  
M. V. Savkina ◽  
M. A. Krivykh ◽  
N. A. Gavrilova ◽  
L. V. Sayapina ◽  
Yu. I. Obukhov ◽  
...  

Streptococcus pneumoniae infection is the most common cause of high morbidity and mortality among children under 5 years of age, immunocompromised people, and the elderly. Despite significant success, the approved pneumococcal conjugate and polysaccharide vaccines are of limited efficacy, providing protection against a small fraction of the known pneumococcal serotypes. The rapid spread of multidrug-resistant strains exacerbates the global challenge of treating infection caused by S. pneumoniae. At the same time, the emerging new strains dictate the need to include new serotypes into vaccines. In view of this, further improvement of vaccines for the prevention of pneumococcal infections is an urgent task. The aim of this study was to review advances in the development of polysaccharide, conjugate, whole-cell pneumococcal vaccines, as well as vaccines based on protein antigens and vaccines with an antigen delivery system. Genomics and proteomics data have helped to improve approaches to the creation of polysaccharide and protein-based vaccines, as well as whole-cell vaccines with the potential for population prophylactic coverage against various pneumococcal serotypes that are not included in the licensed pneumococcal vaccines. The method of antigen delivery to the cell is of great importance in the development of vaccines. The most promising strategy for improving pneumococcal vaccines is the creation of vaccines based on bacterium-like or synthetic particles carrying several antigens, including pneumococcal surface proteins. In conclusion, it should be noted that top-priority vaccines are those that provide a wide range of protection against circulating pneumococcal serotypes and, in addition to eliciting a systemic immune response, also induce local immunity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rebecca J. Loomis ◽  
Anthony T. DiPiazza ◽  
Samantha Falcone ◽  
Tracy J. Ruckwardt ◽  
Kaitlyn M. Morabito ◽  
...  

Nipah virus (NiV) represents a significant pandemic threat with zoonotic transmission from bats-to-humans with almost annual regional outbreaks characterized by documented human-to-human transmission and high fatality rates. Currently, no vaccine against NiV has been approved. Structure-based design and protein engineering principles were applied to stabilize the fusion (F) protein in its prefusion trimeric conformation (pre-F) to improve expression and increase immunogenicity. We covalently linked the stabilized pre-F through trimerization domains at the C-terminus to three attachment protein (G) monomers, forming a chimeric design. These studies detailed here focus on mRNA delivery of NiV immunogens in mice, assessment of mRNA immunogen-specific design elements and their effects on humoral and cellular immunogenicity. The pre-F/G chimera elicited a strong neutralizing antibody response and a superior NiV-specific Tfh and other effector T cell response compared to G alone across both the mRNA and protein platforms. These findings enabled final candidate selection of pre-F/G Fd for clinical development.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6189
Author(s):  
Ben Wylie ◽  
Ferrer Ong ◽  
Hanane Belhoul-Fakir ◽  
Kristin Priebatsch ◽  
Heique Bogdawa ◽  
...  

Cross-presenting dendritic cells (DC) offer an attractive target for vaccination due to their unique ability to process exogenous antigens for presentation on MHC class I molecules. Recent reports have established that these DC express unique surface receptors and play a critical role in the initiation of anti-tumor immunity, opening the way for the development of vaccination strategies specifically targeting these cells. This study investigated whether targeting cross-presenting DC by two complementary mechanisms could improve vaccine effectiveness, in both a viral setting and in a murine melanoma model. Our novel vaccine construct contained the XCL1 ligand, to target uptake to XCR1+ cross-presenting DC, and a cell penetrating peptide (CPP) with endosomal escape properties, to enhance antigen delivery into the cross-presentation pathway. Using a prime-boost regimen, we demonstrated robust expansion of antigen-specific T cells following vaccination with our CPP-linked peptide vaccine and protective immunity against HSV-1 skin infection, where vaccine epitopes were natively expressed by the virus. Additionally, our novel vaccination strategy slowed tumor outgrowth in a B16 murine melanoma model, compared to adjuvant only controls, suggesting antigen-specific anti-tumor immunity was generated following vaccination. These findings suggest that novel strategies to target the antigen cross-presentation pathway in DC may be beneficial for the generation of anti-tumor immunity.


2021 ◽  
Vol 29 (12) ◽  
pp. 834-842
Author(s):  
Wooram Um ◽  
Anuradha Gupta ◽  
Seok Ho Song ◽  
Chan Ho Kim ◽  
Jae Hyung Park

2021 ◽  
Author(s):  
Camille M Le Gall ◽  
Anna Cammarata ◽  
Lukas de Haas ◽  
Ivan Ramos-Tomillero ◽  
Jorge Cuenca-Escalona ◽  
...  

Type 1 conventional dendritic cells (cDC1s) are characterized by their ability to induce potent CD8+ T cell responses. In efforts to generate novel vaccination strategies, notably against cancer, human cDC1s emerge as an ideal target to deliver antigens. cDC1s uniquely express XCR1, a seven transmembrane G protein-coupled receptor (GPCR). Due to its restricted expression and endocytic nature, XCR1 represents an attractive receptor to mediate antigen-delivery to human cDC1s. To explore tumor antigen delivery to human cDC1s, we used an engineered version of XCR1-binding lymphotactin (XCL1), XCL1(CC3). Site-specific sortase-mediated transpeptidation was performed to conjugate XCL1(CC3) to an analog of the HLA-A*02:01 epitope of the cancer testis antigen New York Esophageal Squamous Cell Carcinoma-1 (NY-ESO-1). While poor epitope solubility prevented isolation of stable XCL1-antigen conjugates, incorporation of a single polyethylene glycol (PEG) chain upstream of the epitope-containing peptide enabled generation of soluble XCL1(CC3)-antigen fusion constructs. Binding and chemotactic characteristics of the XCL1-antigen conjugate, as well as its ability to induce antigen-specific CD8+ T cell activation by cDC1s, was assessed. PEGylated XCL1(CC3)-antigen conjugates retained binding to XCR1, and induced cDC1 chemoattraction in vitro. The model epitope was efficiently cross-presented by human cDC1s to activate NY-ESO-1-specific CD8+ T cells. Importantly, vaccine activity was increased by targeting XCR1 at the surface of cDC1s. Our results present a novel strategy for the generation of targeted vaccines fused to insoluble antigens. Moreover, our data emphasize the potential of targeting XCR1 at the surface of primary human cDC1s to induce potent CD8+ T cell responses.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1420
Author(s):  
Rayen Yanara Valdivia-Olivares ◽  
Maria Rodriguez-Fernandez ◽  
María Javiera Álvarez-Figueroa ◽  
Alexis M. Kalergis ◽  
José Vicente González-Aramundiz

The World Health Organization estimates that the pandemic caused by the SARS-CoV-2 virus claimed more than 3 million lives in 2020 alone. This situation has highlighted the importance of vaccination programs and the urgency of working on new technologies that allow an efficient, safe, and effective immunization. From this perspective, nanomedicine has provided novel tools for the design of the new generation of vaccines. Among the challenges of the new vaccine generations is the search for alternative routes of antigen delivery due to costs, risks, need for trained personnel, and low acceptance in the population associated with the parenteral route. Along these lines, transdermal immunization has been raised as a promising alternative for antigen delivery and vaccination based on a large absorption surface and an abundance of immune system cells. These features contribute to a high barrier capacity and high immunological efficiency for transdermal immunization. However, the stratum corneum barrier constitutes a significant challenge for generating new pharmaceutical forms for transdermal antigen delivery. This review addresses the biological bases for transdermal immunomodulation and the technological advances in the field of nanomedicine, from the passage of antigens facilitated by devices to cross the stratum corneum, to the design of nanosystems, with an emphasis on the importance of design and composition towards the new generation of needle-free nanometric transdermal systems.


Sign in / Sign up

Export Citation Format

Share Document