Finite element model for soil-pile interaction in integral abutment bridges

1987 ◽  
Vol 4 (3) ◽  
pp. 127-149 ◽  
Author(s):  
L.F Greimann ◽  
A.M Wolde-Tinsae ◽  
P.S Yang
2021 ◽  
Vol 16 (2-3) ◽  
pp. 75-83
Author(s):  
Jafar Razmi

Mechanical properties of soil are function of many parameters. Moisture content is one of the key factors that impact the soil’s mechanical properties. Soil-pile interaction and pile displacement in bridges can, therefore, be impacted by the moisture content. In particular, pile displacement in Integral Abutment Bridges (IABs) due to daily and seasonal temperature variations is a problem that has been under investigation. IABs don’t have joint and as a result all the load and deformation in the slab is transferred to piles. If piles are deformed beyond their yield point, plastic deformation can occur. The objective of this study is to evaluate the moisture content effect on the interaction of pile and soil and the resulting pile displacement through computational modeling. An ANSYS Finite Element Model (FEM) is used to repeatedly change the moisture content of the soil and adjust the properties and compute the displacement in the piles. It is shown that increasing the moisture content decreases several key parameters such as bulk density, young’s modulus, cohesion and Poisson’s ratio. The simulation results indicate higher displacements of the piles as the moisture content increases. This behavior can be explained by decreased elastic modulus. As a result, soil behaves more flexible and allows more displacement of the pile.


2012 ◽  
Vol 446-449 ◽  
pp. 733-738
Author(s):  
Mohammed Awad ◽  
Tian Lai Yu

Structural behavior of concrete integral abutment bridge subjected to temperature rise was investigated through a numerical modeling and parametric study. Long-term, field monitoring through the summer was performed on Industrial Park Bridge located in Heilongjiang province, China from June 13, 2010 until June 28, 2010. The collected data was used to validate the accuracy of a 3D-finite element model of the bridge which took into account soil-structure interaction. Based on the calibrated finite element model a parametric study considered two parameters, bridge length and abutment height, was carried out to investigate the effects of this parameters on structural behavior of integral abutment bridge subject to temperature rise. It was determined that Thermal load in the superstructure of the integral bridge develop significant magnitudes of bending and axial forces in the superstructure. The largest magnitude of thermally induced moment always occurs near the abutment, and axial force is constant across the length of each span. For bridge thermal expansion, longer bridges and taller abutments cause larger thermally induced superstructure axial force due to development of higher backfill pressure. Generally span length has a higher influence for thermally induced superstructure forces in terms of axial force and bending moment than the abutment height.


Author(s):  
Shehab Mourad ◽  
Sami W. Tabsh

Interest in the use of integral bridges has increased in recent years because of their economy, reliability, and strength. However, most of the published research on integral bridges has been concerned with determination of the thermal effect, creep analysis, and seismic behavior. Few studies on live load analysis of integral abutment bridges have been carried out. The pile load behavior of integral abutments supporting composite steel superstructures subjected to gravity loads is investigated. The applied loading is composed of one or more side-by-side HS20-44 trucks. The finite element method is used to analyze the three-dimensional bridge system and determine forces in the piles. A parametric study is performed to obtain the effects of the number of trucks and their location, superstructure geometry, pile spacing and stiffness, pile connection type, and wingwall length on the pile loads. A simple, approximate procedure for computing pile loads is developed on the basis of the findings of the finite element analysis. The results indicate that the abutment-wingwall system does not behave as a rigid block as in the conventional case of a footing on flexible piles. Also, the generated bending moment in the piles caused by gravity load is significant and cannot be neglected in design.


Sign in / Sign up

Export Citation Format

Share Document