Stellar activity cycles in lower main sequence stars

1986 ◽  
Vol 6 (8) ◽  
pp. 231-233
Author(s):  
Sallie L. Baliunas
2018 ◽  
Vol 616 ◽  
pp. A155 ◽  
Author(s):  
A. F. Lanza ◽  
L. Malavolta ◽  
S. Benatti ◽  
S. Desidera ◽  
A. Bignamini ◽  
...  

Aims. Stellar activity is the ultimate source of radial-velocity (hereinafter RV) noise in the search for Earth-mass planets orbiting late-type main-sequence stars. We analyse the performance of four different indicators and the chromospheric index log R′HK in detecting RV variations induced by stellar activity in 15 slowly rotating (υ sin i ≤ 5 km s−1), weakly active (log R′HK ≤ −4.95) solar-like stars observed with the high-resolution spectrograph High Accuracy Radial velocity Planet Searcher for the Northern hemisphere (HARPS-N). Methods. We consider indicators of the asymmetry of the cross-correlation function (CCF) between the stellar spectrum and the binary weighted line mask used to compute the RV, that is the bisector inverse span (BIS), ΔV, and a new indicator Vasy(mod) together with the full width at half maximum (FWHM) of the CCF. We present methods to evaluate the uncertainties of the CCF indicators and apply a kernel regression (KR) between the RV, the time, and each of the indicators to study their capability of reproducing the RV variations induced by stellar activity. Results. The considered indicators together with the KR prove to be useful to detect activity-induced RV variations in ~47 ± 18 percent of the stars over a two-year time span when a significance (two-sided p-value) threshold of one percent is adopted. In those cases, KR reduces the standard deviation of the RV time series by a factor of approximately two. The BIS, the FWHM, and the newly introduced Vasy(mod) are the best indicators, being useful in 27 ± 13, 13 ± 9, and 13 ± 9 percent of the cases, respectively. The relatively limited performances of the activity indicators are related to the very low activity level and υ sin i of the considered stars. For the application of our approach to sun-like stars, a spectral resolution allowing λ/Δλ ≥ 105 and highly stabilized spectrographs are recommended.


2019 ◽  
Vol 491 (2) ◽  
pp. 2706-2714
Author(s):  
Fiona Nichols-Fleming ◽  
Eric G Blackman

ABSTRACT The association of star-spots with magnetic fields leads to an expectation that quantities which correlate with magnetic field strength may also correlate with star-spot coverage. Since younger stars spin faster and are more magnetically active, assessing whether star-spot coverage correlates with shorter rotation periods and stellar youth tests these principles. Here, we analyse the star-spot covering fraction versus stellar age for M-, G-, K-, and F-type stars based on previously determined variability and rotation periods of over 30 000 Kepler main-sequence stars. We determine the correlation between age and variability using single and dual power-law best fits. We find that star-spot coverage does indeed decrease with age. Only when the data are binned in an effort to remove the effects of activity cycles of individual stars, do statistically significant power-law fits emerge for each stellar type. Using bin averages, we then find that the star-spot covering fraction scales with the X-ray to bolometric ratio to the power λ with 0.22 ± 0.03 < λ < 0.32 ± 0.09 for G-type stars of rotation period below 15 d and for the full range of F- and M-type stars. For K-type stars, we find two branches of λ separated by variability bins, with the lower branch showing nearly constant star-spot coverage and the upper branch λ ∼ 0.35 ± 0.04. G-type stars with periods longer than 15 d exhibit a transition to steeper power law of λ ∼ 2.4 ± 1.0. The potential connection to previous rotation-age measurements suggesting a magnetic breaking transition at the solar age, corresponding to period of 24.5 is also of interest.


2005 ◽  
Vol 160 (2) ◽  
pp. 423-449 ◽  
Author(s):  
S. J. Wolk ◽  
F. R. Harnden, Jr. ◽  
E. Flaccomio ◽  
G. Micela ◽  
F. Favata ◽  
...  

Author(s):  
Graeme H. Smith

AbstractCorrelations are identified between the strength of the λ10830 He I triplet line and the following tracers of stellar activity amongst FGK dwarfs with colours of (B − V) > 0.47: coronal soft X-ray emission, emission in the λ1549 C IV and λ1335 C II lines originating from the transition region, and Ca II H and K emission from the chromosphere. No such correlations are present amongst dwarfs with spectral type earlier than F6. In addition, G and K dwarfs with strong triplet lines show evidence of excess flux in the GALEX FUV band compared to weak-triplet-line dwarfs. The X-ray spectra of late-F, G, and K dwarfs with He I triplets stronger than 160 mÅ have greater values of the ROSAT hardness ratio HR1 than are typical of weak-triplet dwarfs in the same range of spectral type. In other words, dwarfs later than F7V with strong He I triplet lines tend towards harder 0.1–2.0 keV X-ray spectra than weak-triplet dwarfs, although values of HR1 ~ −0.2 to +0.1 can still be encountered amongst a minority of weak-He-triplet stars. As regards, FGK main sequence stars the observational data on the λ10830 triplet line remains sparse. Progress could be made through spectroscopy of high resolution for samples of hundreds of stars, selected on the basis of having other measures of chromospheric and coronal activity available.


1966 ◽  
Vol 24 ◽  
pp. 40-43
Author(s):  
O. C. Wilson ◽  
A. Skumanich

Evidence previously presented by one of the authors (1) suggests strongly that chromospheric activity decreases with age in main sequence stars. This tentative conclusion rests principally upon a comparison of the members of large clusters (Hyades, Praesepe, Pleiades) with non-cluster objects in the general field, including the Sun. It is at least conceivable, however, that cluster and non-cluster stars might differ in some fundamental fashion which could influence the degree of chromospheric activity, and that the observed differences in chromospheric activity would then be attributable to the circumstances of stellar origin rather than to age.


1976 ◽  
Vol 32 ◽  
pp. 49-55 ◽  
Author(s):  
F.A. Catalano ◽  
G. Strazzulla

SummaryFrom the analysis of the observational data of about 100 Ap stars, the radii have been computed under the assumption that Ap are main sequence stars. Radii range from 1.4 to 4.9 solar units. These values are all compatible with the Deutsch's period versus line-width relation.


1998 ◽  
Vol 116 (4) ◽  
pp. 1801-1809 ◽  
Author(s):  
Antonio J. Delgado ◽  
Emilio J. Alfaro ◽  
André Moitinho ◽  
José Franco

1998 ◽  
Vol 501 (1) ◽  
pp. 192-206 ◽  
Author(s):  
Rosa Izela Diaz‐Miller ◽  
Jose Franco ◽  
Steven N. Shore

Sign in / Sign up

Export Citation Format

Share Document