Conductive ion transport across the erythrocyte membrane of lamprey (Lampetra fluviatilis) in isotonic conditions is mainly via an inwardly rectifying K+ channel

1996 ◽  
Vol 115 (2) ◽  
pp. 169-176 ◽  
Author(s):  
Leila V. Virkki ◽  
Mikko Nikinmaa
1998 ◽  
Vol 201 (12) ◽  
pp. 1927-1937 ◽  
Author(s):  
LV Virkki ◽  
A Salama ◽  
M Nikinmaa

We have measured the effects of oxygen tension on the transport of Na+, K+ and Cl- across the erythrocyte membrane of the lamprey Lampetra fluviatilis. The transport of each ion was affected by the oxygen tension of the medium. Hypoxic conditions (PO2 2 kPa) caused an increase in the acidification-induced influx of Na+ via Na+/H+ exchange. The influx of K+ was only slightly affected by the oxygenation of the medium. In contrast, the basal K+ efflux, measured using the radioactive isotope 43K, was markedly reduced by decreasing the oxygen tension of the medium, whereas the K+ flux in hypotonic medium was not affected. Only minor effects of hypoxic conditions on the influx of Cl- were observed in either isotonic or hypotonic conditions (there was a tendency for the isotonic influx to increase) or on the efflux in isotonic conditions. However, deoxygenation caused a marked reduction in the Cl- efflux in hypotonic conditions. The results show that oxygen tension has a marked effect on the pH and volume regulatory transport pathways of lamprey erythrocytes. For K+ and Cl-, the regulation appears to be asymmetric, i.e. influx and efflux are affected differently.


1989 ◽  
Vol 16 (3) ◽  
pp. 274-280
Author(s):  
Boris Isomaa ◽  
Henry Hägerstrand ◽  
Gun I.L. Paatero

Amphiphilic compounds with distinct apolar and polar parts are readily intercalated into the erythrocyte membrane. When intercalated into the membrane, amphiphiles are probably orientated so that the polar head is at the polar-apolar interface of the lipid bilayer and the hydrophobic part within the apolar core of the bilayer. However, by virtue of their difference in molecular shape from the bulk lipids of the lipid bilayer, it is possible that the intercalated amphiphiles are partly segregated from bulk lipids and accumulate at protein-lipid interfaces in the bilayer, where the packing of the bilayer lipids may be less ordered. Our studies show that amphiphiles, when intercalated into the erythrocyte membrane, trigger alterations in several membrane-connected functions. Some of the alterations induced (decreased osmotic fragility, increased passive potassium fluxes) seem to be due to non-specific interactions of the amphiphiles with the membrane, whereas other functions (ion transport mediated by membrane proteins, regulation of cell shape) seem to be sensitive to particular features of the amphiphiles. Our studies indicate that the intercalation of amphiphiles into the erythrocyte membrane must involve rearrangements within the lipid bilayer. We have suggested that, when intercalated into the lipid bilayer, amphiphiles trigger a rapid formation of non-bilayer phases, which protect the bilayer against a collapse and bring about a trans-bilayer redistribution of intercalated amphiphiles as well as of bilayer lipids. At high sublytic concentrations, this process may also involve a release of microvesicles from the membrane.


1999 ◽  
Vol 159 (3) ◽  
pp. 204-213 ◽  
Author(s):  
Anna Y. Bogdanova ◽  
Leila V. Virkki ◽  
Gennadii P. Gusev ◽  
Mikko Nikinmaa

1995 ◽  
Vol 6 (9) ◽  
pp. 1231-1240 ◽  
Author(s):  
W Tang ◽  
A Ruknudin ◽  
W P Yang ◽  
S Y Shaw ◽  
A Knickerbocker ◽  
...  

We describe the expression of gpIRK1, an inwardly rectifying K+ channel obtained from guinea pig cardiac cDNA. gpIRK1 is a homologue of the mouse IRK1 channel identified in macrophage cells. Expression of gpIRK1 in Xenopus oocytes produces inwardly rectifying K+ current, similar to the cardiac inward rectifier current IK1. This current is blocked by external Ba2+ and Cs+. Plasmids containing the gpIRK1 coding region under the transcriptional control of constitutive (PGK) or inducible (GAL) promoters were constructed for expression in Saccharomyces cerevisiae. Several observations suggest that gpIRK1 forms functional ion channels when expressed in yeast. gpIRK1 complements a trk1 delta trk2 delta strain, which is defective in potassium uptake. Expression of gpIRK1 in this mutant restores growth on low potassium media. Growth dependent on gpIRK1 is inhibited by external Cs+. The strain expressing gpIRK1 provides a versatile genetic system for studying the assembly and composition of inwardly rectifying K+ channels.


Sign in / Sign up

Export Citation Format

Share Document