Regulation of ion transport across lamprey (Lampetra fluviatilis) erythrocyte membrane by oxygen tension

1998 ◽  
Vol 201 (12) ◽  
pp. 1927-1937 ◽  
Author(s):  
LV Virkki ◽  
A Salama ◽  
M Nikinmaa

We have measured the effects of oxygen tension on the transport of Na+, K+ and Cl- across the erythrocyte membrane of the lamprey Lampetra fluviatilis. The transport of each ion was affected by the oxygen tension of the medium. Hypoxic conditions (PO2 2 kPa) caused an increase in the acidification-induced influx of Na+ via Na+/H+ exchange. The influx of K+ was only slightly affected by the oxygenation of the medium. In contrast, the basal K+ efflux, measured using the radioactive isotope 43K, was markedly reduced by decreasing the oxygen tension of the medium, whereas the K+ flux in hypotonic medium was not affected. Only minor effects of hypoxic conditions on the influx of Cl- were observed in either isotonic or hypotonic conditions (there was a tendency for the isotonic influx to increase) or on the efflux in isotonic conditions. However, deoxygenation caused a marked reduction in the Cl- efflux in hypotonic conditions. The results show that oxygen tension has a marked effect on the pH and volume regulatory transport pathways of lamprey erythrocytes. For K+ and Cl-, the regulation appears to be asymmetric, i.e. influx and efflux are affected differently.

1998 ◽  
Vol 201 (5) ◽  
pp. 693-700 ◽  
Author(s):  
A Bogdanova ◽  
A Sherstobitov ◽  
G P Gusev

The existence of a furosemide-sensitive Cl- transport pathway activated by external Ca2+ and Mg2+ has been demonstrated previously in studies of Cl- influx across the lamprey erythrocyte membrane. The aim of the present study was to characterize further specific Cl- transport pathways, especially those involved in Cl- efflux, in the red blood cell membrane of Lampetra fluviatilis. Cl- efflux was inhibited by 0.05 mmol l-1 dihydroindenyloxyalkanoic acid (DIOA) (81 %), 1 mmol l-1 furosemide (76 %) and 0.1 mmol l-1 niflumic acid (54 %). Bumetanide (100 micromol l-1) and DIDS (100 micromol l-1) had no effect effect on Cl- efflux. Substitution of external Cl- by gluconate, but not by NO3-, led to a gradual decline of Cl- efflux. In addition, the removal of external Ca2+ resulted in a significant reduction in the rate of Cl- efflux. Membrane depolarization caused by increasing external K+ concentration or by inhibiting K+ channels with 1 mmol l-1 Ba2+ did not affect Cl- efflux. The furosemide-sensitive component of Cl- influx was a saturable function of external [Cl-] with an apparent Km of approximately 92 mmol l-1 and Vmax of approximately 17.8 mmol l-1 cells-1 h-1. Furosemide did not affect intracellular Cl- concentration (57.6+/-5. 2 mmol l-1 cell water), measured using an ion-selective Cl- electrode, showing that a furosemide-sensitive pathway is not involved in net Cl- movement. A gradual fall (from 28.1+/-1.4 to 15. 0+/-1.3 mmol l-1 cells-1 h-1) in unidirectional Cl- influx with time was observed within 3 h of cell preincubation in the standard physiological medium. These data provide evidence for the existence for an electroneutral furosemide-sensitive anion-exchange pathway in the lamprey erythrocyte membrane that accepts chloride and nitrate, but not bicarbonate or bromide.


1989 ◽  
Vol 16 (3) ◽  
pp. 274-280
Author(s):  
Boris Isomaa ◽  
Henry Hägerstrand ◽  
Gun I.L. Paatero

Amphiphilic compounds with distinct apolar and polar parts are readily intercalated into the erythrocyte membrane. When intercalated into the membrane, amphiphiles are probably orientated so that the polar head is at the polar-apolar interface of the lipid bilayer and the hydrophobic part within the apolar core of the bilayer. However, by virtue of their difference in molecular shape from the bulk lipids of the lipid bilayer, it is possible that the intercalated amphiphiles are partly segregated from bulk lipids and accumulate at protein-lipid interfaces in the bilayer, where the packing of the bilayer lipids may be less ordered. Our studies show that amphiphiles, when intercalated into the erythrocyte membrane, trigger alterations in several membrane-connected functions. Some of the alterations induced (decreased osmotic fragility, increased passive potassium fluxes) seem to be due to non-specific interactions of the amphiphiles with the membrane, whereas other functions (ion transport mediated by membrane proteins, regulation of cell shape) seem to be sensitive to particular features of the amphiphiles. Our studies indicate that the intercalation of amphiphiles into the erythrocyte membrane must involve rearrangements within the lipid bilayer. We have suggested that, when intercalated into the lipid bilayer, amphiphiles trigger a rapid formation of non-bilayer phases, which protect the bilayer against a collapse and bring about a trans-bilayer redistribution of intercalated amphiphiles as well as of bilayer lipids. At high sublytic concentrations, this process may also involve a release of microvesicles from the membrane.


1999 ◽  
Vol 159 (3) ◽  
pp. 204-213 ◽  
Author(s):  
Anna Y. Bogdanova ◽  
Leila V. Virkki ◽  
Gennadii P. Gusev ◽  
Mikko Nikinmaa

2004 ◽  
Vol 286 (1) ◽  
pp. L15-L22 ◽  
Author(s):  
Andrea Olschewski ◽  
Zhigang Hong ◽  
Douglas A. Peterson ◽  
Daniel P. Nelson ◽  
Valerie A. Porter ◽  
...  

At birth, associated with the rise in oxygen tension, the pulmonary arteries (PA) dilate and the ductus arteriosus (DA) constricts. Both PA and DA constrict with vasoconstrictors and dilate with vasodilators. They respond in a contrary manner only to changes in oxygen tension. We hypothesized that the effects of changes in oxygen are mediated by changes in redox status. Consequently, we tested whether a reducing agent, DTT, and an oxidizing agent, dithionitrobenzoic acid (DTNB), would have opposite effects on a major oxygen signaling pathway in the PA and DA smooth muscle cells (SMCs), the sequence of change in potassium current ( IK), membrane potential ( Em), cytosolic calcium, and vessel tone. Under normoxic conditions, DTT constricted adult and fetal resistance PA rings, whereas in DA rings DTT acted as a potent vasodilator. In normoxia, voltage-clamp measurements showed inhibition of IK by DTT in PASMCs and, in contrast, activation in DASMCs. Consequently, DTT depolarized fetal and adult PASMCs and hyperpolarized DASMCs. [Ca2+]i was increased by DTT in fetal and adult PASMCs and decreased in DASMCs. Under hypoxic conditions, DTNB constricted DA rings and caused vasodilatation in fetal PA rings. DTNB inhibited IK and depolarized the cell membrane in DASMCs. In contrast, activation of IK and hyperpolarization was seen in PASMCs. Thus the same redox signal can elicit opposite effects on IK, Em, cytosolic calcium, and vascular tone in resistance PA and the DA. These observations support the concept that redox changes could signal the opposite effects of oxygen in the PA and DA.


1989 ◽  
Vol 256 (4) ◽  
pp. C893-C901 ◽  
Author(s):  
M. R. Van Scott ◽  
C. W. Davis ◽  
R. C. Boucher

Radioisotopic flux measurements were performed on rabbit Clara cell epithelium cultured in serum-free hormone-supplemented medium to identify the major ion transport pathways in the cell type. Clara cells cultured in serum-free hormone-supplemented medium exhibit a large short-circuit current compared with cells maintained in serum-containing medium (45 microA/cm2 vs. 15 microA/cm2). The responses to amiloride and isoproterenol, however, are similar for cells grown in the two media. A net amiloride-sensitive movement of Na+ in the mucosal (M)-to-serosal (S) direction undershort- and open-circuit conditions is detected (1.48 and 0.67 mueq.h-1.cm-2, respectively). No statistically significant difference in the unidirectional fluxes of Cl- is apparent in the basal state, but a net flux of Cl- in the S-to-M direction is observed after exposure of the apical membrane to amiloride (0.93 mueq.h-1.cm-2). The partial ionic conductances for Na+ and Cl- estimated from the fluxes measured in the passive directions (JNaS----M, JClM----S) exceed the total tissue conductance by 20%. Ussing flux ratio analyses of Cl- movements at clamped potentials between -60 and +20 mV show that Cl- movements are not strictly through passive conductive pathways at negative potentials. The movement of Cl- can be modeled by passive diffusion combined with Cl- -Cl- exchange equal to 20% of total passive fluxes of Na+ and Cl-. These observations indicate that 1) Na+ absorption is the major active ion transport pathway across cultured Clara cells, 2) active Cl- secretion is minimal in the basal state, and 3) approximately 20% of the unidirectional Cl- fluxes occur via nonconductive pathways.


Author(s):  
Eleftherios A. Makris ◽  
Jerry Hu ◽  
Kyriacos A. Athanasiou

The poor ability of articular cartilage to repair following disease and injury makes the tissue a key target for reparative and regenerative medicine strategies. It has been shown that human knee joint resides under hypoxic conditions. Oxygen tension in healthy human synovium is between 7 and 11% and in articular cartilage may therefore be as low as 1–2.5% [1].


Sign in / Sign up

Export Citation Format

Share Document