Semiclassical calculation of energy transfer in polyatomic molecules. VIII. Theory for atom + non-linear triatom

1983 ◽  
Vol 76 (3) ◽  
pp. 315-329 ◽  
Author(s):  
Gert Due Billing
Author(s):  
S Cafferty ◽  
G. R. Tomlinson

Automotive dampers are an important element of a vehicle's suspension system for controlling road handling and passenger ride comfort. Many automotive dampers have non-linear asymmetric characteristics to accommodate the incompatible requirements between ride comfort and road handling, thus the ride comfort engineer requires techniques that can characterize this non-linear behaviour and provide models of the dampers for use in ride performance simulations of the full suspension system. The work presented in this paper is concerned with developing a frequency domain technique using higher order frequency response functions (HFRFs) to characterize a Monroe automotive damper. The principal diagonals and multidimensional surfaces of the HFRFs up to third order are obtained. Non-linear damping coefficients for the damper are derived from the HFRFs and the energy transfer properties are investigated. The results show that the majority of the HFRFs contain no peaks or resonances, indicating that the damper has no preferred frequencies for energy transfer. The accuracy of the damping coefficients determined from the HFRFs is poor. This is due to the inability of the technique to measure the pure HFRFs and separate the effects of non-linearities in the input actuator from those in the damper. It is concluded that these constraints currently impose some limit on the use of the methodology.


1963 ◽  
Vol 15 (3) ◽  
pp. 385-398 ◽  
Author(s):  
K. Hasselmann

The energy transfer due to non-linear interactions between the components of a gravity-wave spectrum discussed in Parts 1 and 2 of this paper is evaluated for a fully and partially developed Neumann spectrum with various spreading factors. The characteristic time scales of the energy transfer are found to be typically of the order of a few hours. In all cases the high frequencies and the low-frequency peak are found to gain energy from an intermediate range of frequencies. The transfer of energy to very low frequencies and to waves travelling at large angles to the main propagation direction of the spectrum is negligible. Computations are presented also for the rate of decay of swell interacting with local wind-generated seas (represented by a Neumann spectrum). An appreciable decay is found only for swell frequencies in the same range as those of the local sea.


1988 ◽  
Vol 8 (2-4) ◽  
pp. 315-334
Author(s):  
L. Carlomusto ◽  
A. Cartelli ◽  
S. Solimeno ◽  
R. Velotta ◽  
R. Bruzzese

We present a very simple theoretical model aimed at the analysis of non-linear relaxation processes in molecular gases in the presence of partial molecular dissociation induced by vibrational–vibrational exchange between highly excited molecules. The model has a phenomenological character, since it analyzes the behavior of a system of anharmonic diatomic molecules, which is a very rough approximation of a polyatomic molecule such as SF6. Nonetheless, it provides an interesting key for the interpretation of a number of peculiar features characterizing our experimental observation, with which a comparison is made. In particular, the model takes realistic account of the influence of dissociation processes on the relaxation time.


1993 ◽  
Vol 57 (2) ◽  
pp. 89-93 ◽  
Author(s):  
J. S. Bakos ◽  
P. N. Ign�cz ◽  
A. L�rincz ◽  
Zs. S�rlei ◽  
J. Szigeti

Sign in / Sign up

Export Citation Format

Share Document