Tectonic setting of Cadomian low-pressure metamorphism in the central Ossa-Morena zone (Iberian massif, SW spain)

1992 ◽  
Vol 56 (1-2) ◽  
pp. 113-137 ◽  
Author(s):  
L. Egufluz ◽  
B. Abalos
2000 ◽  
Vol 64 (5) ◽  
pp. 801-814 ◽  
Author(s):  
M. Rodas ◽  
F. J. Luque ◽  
J. F. Barrenechea ◽  
J. C. Fernández-Caliani ◽  
A. Miras ◽  
...  

AbstractFour distinct associations of graphite have been identified in the low-pressure, high-temperature belt of the Sierra de Aracena (SW Spain). Syngenetic occurrences include: (1) stratiform graphite mineralization within a calc-silicate series; (2) disseminated graphite within a terrigenous sequence; and (3) ‘restitic’ graphite within anatectic tonalites and their enclaves. Epigenetic graphite occurs as (4) veins cross-cutting mafic granulites.Graphite in all types of occurrences is highly crystalline, with the c parameter close to 6.70 Å. Such c values correspond to temperatures of formation of ∼800°C. The thermal properties of graphite are also typical of well-ordered graphite and provide DTA exothermic maxima ranging from 810 to 858°C depending on the mode of occurrence. The differences among the temperatures of formation estimated by graphite geothermometry, the position of the exothermic maximum in the DTA curves, and petrologic geothermometers are discussed in terms of the applicability of graphite geothermometry to granulite-facies rocks. Carbon isotope analysis yields δ13C values in the range from −31.6 to −21.4% for syngenetic graphite of types I, II and III attributable to biogenically-derived carbon. The heavier signatures for graphite in vein occurrences (δ13C= −17.7 to −18.3%) with respect to syngenetic graphites suggest that isotopically heavy carbonic species were incorporated into the metamorphic fluids (probably as a consequence of decarbonation reactions of the calc-silicate rocks) from which graphite precipitated into the veins. These fluids were strongly channelled through structural pathways.


During late Palaeozoic (Hercynian) low-pressure regional metamorphism in the Pyrenees, exceptionally high thermal gradients existed within the upper crust, and temperatures as high as 700 °C were attained at depths as shallow as 10 km, resulting in large-scale crustal anatexis. Stable isotope studies indicate that the crust was flushed by circulating ground waters to depths of 12 km, but the amount of fluid involved below 8 km was probably not much greater than 50% of the rock mass, and this fluid apparently did not penetrate the pre-Palaeozoic basement below 12 km. There is no evidence for continental collision in the region at that time, and these data, together with other geological and geophysical constraints, suggest that the most plausible tectonic setting for the metamorphism is a zone of continental rifting, possibly associated with strike-slip movement. Thermal modelling suggests that a transient, high-temperature heat source in the lower crust is required to account for the observed metamorphic P - T arrays. Among a range of possible solutions, a basaltic sill, 6-8 km thick and emplaced at 14 km could generate a maximum temperature array similar to those observed in the Pyrenees.


2016 ◽  
Vol 382 ◽  
pp. 92-110 ◽  
Author(s):  
Laura González-Acebrón ◽  
Ramón Mas ◽  
José Arribas ◽  
Jose Manuel Gutiérrez-Mas ◽  
Carlos Pérez-Garrido

1992 ◽  
Vol 129 (1) ◽  
pp. 41-57 ◽  
Author(s):  
J. Reinhardt

AbstractThe Mary Kathleen Fold Belt in northeastern Australia consists of highly deformed, Mid-Proterozoic sedimentary and volcanic sequences as well as intrusives, which were metamorphosed under low-pressure, high-temperature conditions. In the light of current controversy on tectono-thermal settings of low-pressure metamorphic terrains, the interrelations of progressive deformation and metamorphism have been closely examined. Remarkably, there is no direct evidence for syn-metamorphic extensional deformation nor is any significant intrusive activity recorded.Syn-metamorphic structures indicate lateral, bulk coaxial shortening of at least 50–60%. Tight upright folds, pervasive axial planar fabrics, undulating fold axes, and a vertical mineral lineation characterize this deformation. The metamorphic textures, particularly those in andalusite- and/or cordierite-bearing schists, reveal the sequential growth of metamorphic minerals that was synchronous with progressively increasing bulk rock strain. The corresponding metamorphic reactions constrain a prograde P–T path segment that crossed the andalusite and sillimanite stability fields while temperature and pressure increased. After reaching the metamorphic peak, the region cooled down near-isobarically, before major decompression occurred. The prograde–retrograde P–T path forms a complete anticlockwise loop.Due to the lack of evidence for crustal thinning and large-scale magmatism in the upper crust, alternative models are discussed in order to explain the transient high geothermal gradient. These are in particular convective thinning of the lithospheric mantle and fast decompression of crustal sections, possibly linked to tectonic processes preceeding the low-pressure/high-temperature orogenic event.


Sign in / Sign up

Export Citation Format

Share Document