NMDA receptor-mediated excitability in dendritically deformed dentate granule cells in pilocarpine-treated rats

1991 ◽  
Vol 129 (1) ◽  
pp. 69-73 ◽  
Author(s):  
Masako Isokawa ◽  
Luiz Eugenio A.M. Mello
2006 ◽  
Vol 95 (2) ◽  
pp. 1213-1220 ◽  
Author(s):  
Annalisa Scimemi ◽  
Stephanie Schorge ◽  
Dimitri M. Kullmann ◽  
Matthew C. Walker

The perforant path provides the main excitatory input into the hippocampus and has been proposed to play a critical role in the generation of temporal lobe seizures. It has been hypothesized that changes in glutamatergic transmission in this pathway promote the epileptogenic process and seizure generation. We therefore asked whether epileptogenesis is associated with enhanced glutamatergic transmission from the perforant path to dentate granule cells. We used a rat model of temporal lobe epilepsy in which spontaneous seizures occur after an episode of pilocarpine-induced status epilepticus. Whole cell patch-clamp recordings were obtained from dentate granule cells in hippocampal slices from control and epileptic animals 3 wk after pilocarpine-induced status epilepticus. The paired pulse ratio of perforant path-evoked AMPA receptor-mediated excitatory postsynaptic currents (EPSCs) was reduced in tissue obtained from epileptic rats. This is consistent with an increase in release probability. N-methyl-d-aspartate (NMDA) receptor-mediated EPSCs were also prolonged. This prolongation could not be accounted for by decreased activity of glutamate transporters or by a change in NMDA receptor subunit composition in dentate granule cells, implying a change in NMDA receptor kinetics. This change in NMDA receptor kinetics was associated with the emergence of significant synaptic cross-talk, detected as a use-dependent block of receptors activated by medial perforant path synapses after lateral perforant path stimulation in MK-801. Enhanced glutamatergic transmission and the emergence of cross-talk among perforant path-dentate granule cell synapses may contribute to lowering seizure threshold.


1997 ◽  
Vol 77 (6) ◽  
pp. 3355-3369 ◽  
Author(s):  
Masako Isokawa ◽  
Michel Levesque ◽  
Itzhak Fried ◽  
Jerome Engel

Isokawa, Masako, Michel Levesque, Itzhak Fried, and Jerome Engel, Jr. Glutamate currents in morphologically identified human dentate granule cells in temporal lobe epilepsy. J. Neurophysiol. 77: 3355–3369, 1997. Glutamate-receptor-mediated synaptic transmission was studied in morphologically identified hippocampal dentate granule cells (DGCs; n = 31) with the use of whole cell patch-clamp recording and intracellular injection of biocytin or Lucifer yellow in slices prepared from surgically removed medial temporal lobe specimens of epileptic patients (14 specimens from 14 patients). In the current-clamp recording, low-frequency stimulation of the perforant path generated depolarizing postsynaptic potentials that consisted of excitatory postsynaptic potentials and phase-inverted inhibitory postsynaptic potentials mediated by the γ-aminobutyric acid-A (GABAA) receptor at a resting membrane potential of −62.7 ± 2.0 (SE) mV. In the voltage-clamp recording, two glutamate conductances, a fast α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-receptor-mediated excitatory postsynaptic current (EPSC; AMPA EPSC) and a slowly developing N-methyl-d-aspartate (NMDA)-receptor-mediated EPSC (NMDA EPSC), were isolated in the presence of a GABAA receptor antagonist. NMDA EPSCs showed a voltage-dependent increase in conductance with depolarization by exhibiting an N-shaped current-voltage relationship. The slope conductance of the NMDA EPSC ranged from 1.1 to 9.4 nS in 31 DGCs, reaching up to twice the size of the AMPA conductance. This widely varying size of the NMDA conductance resulted in the generation of double-peaked EPSCs and a nonlinear increase of the slope conductance of up to 37.5 nS with positive membrane potentials, which resembled “paroxysmal currents,” in a subpopulation of the neurons. In contrast, AMPA EPSCs, which were isolated in the presence of an NMDA receptor antagonist (2-amino-5-phosphonovaleric acid), showed voltage-independent linear changes in the current-voltage relationship and were blocked by 6-cyano-7-nitroquinoxaline-2,3-dione. The AMPA conductance showed little variance, regardless of the size of the NMDA conductance of a given neuron. The average AMPA slope conductance was 5.28 ± 0.65 (SE) nS in 31 human DGCs. This value was similar to AMPA EPSC conductances in normal rat DGCs (5.35 ± 0.52 nS, mean ± SE; n = 55). Dendritic morphology and spine density were quantified in the individual DGCs to assess epileptic pathology. Dendritic spine density showed an inverse correlation ( r 2 = 0.705) with a slower rise time and a longer half-width of the excitatory postsynaptic potentials mediated by the NMDA receptor. It is concluded that both AMPA and NMDA EPSCs contribute to human DGC synaptic transmission in epileptic hippocampus. However, a wide range of changes in the slope conductance of the NMDA EPSCs suggests that the NMDA-receptor-mediated conductance could be altered in human epileptic DGCs. These changes may influence the generation of chronic subthreshold epileptogenic synaptic activity and give rise to pathological excitation leading to epileptic seizures and dendritic pathology.


1996 ◽  
Vol 75 (5) ◽  
pp. 1901-1908 ◽  
Author(s):  
M. Isokawa

1. Inhibitory postsynaptic currents (IPSCs) were studied in hippocampal dentate granule cells (DGCs) in the pilocarpine model and human temporal lobe epilepsy, with the use of the whole cell patch-clamp recording technique in slice preparations. 2. In the pilocarpine model, hippocampal slices were prepared from rats that were allowed to experience spontaneous seizures for 2 mo. Human hippocampal specimens were obtained from epileptic patients who underwent surgical treatment for medically intractable seizures. 3. IPSCs were generated by single perforant path stimulation and recorded at a membrane potential (Vm) of 0 mV near the reversal potential of glutamate excitatory postsynaptic currents in the voltage-clamp recording. IPSCs were pharmacologically identified as gamma-aminobutyric acid-A (GABAA) IPSCs by 10 microM bicuculline methiodide. 4. During low-frequency stimulation, IPSCs were not different in amplitude among non-seizure-experienced rat hippocampi, human nonsclerotic hippocampi, seizure-experienced rat hippocampi, and human sclerotic hippocampi. In the last two groups of DGCs, current-clamp recordings indicated the presence of prolonged excitatory postsynaptic potentials (EPSPs) mediated by the N-methyl-D-aspartate (NMDA) receptor. 5. High-frequency stimulation, administered at Vm = -30 mV to activate NMDA currents, reduced GABAA IPSC amplitude specifically in seizure-experienced rat hippocampi (t = 2.5, P < 0.03) and human sclerotic hippocampi (t = 7.7, P < 0.01). This reduction was blocked by an NMDA receptor antagonist, 2-amino-5-phosphonovaleric acid (APV) (50 microM). The time for GABAA IPSCs to recover to their original amplitude was also shortened by the application of APV. 6. I conclude that, when intensively activated, NMDA receptor-mediated excitatory transmission may interact with GABAergic synaptic inhibition in DGCs in seizure-experienced hippocampus to transiently reduce GABA(A) receptor-channel function. Such interactions may contribute to give rise to epileptic excitation in chronically seizure-prone hippocampus.


Sign in / Sign up

Export Citation Format

Share Document