Glutamate Currents in Morphologically Identified Human Dentate Granule Cells in Temporal Lobe Epilepsy

1997 ◽  
Vol 77 (6) ◽  
pp. 3355-3369 ◽  
Author(s):  
Masako Isokawa ◽  
Michel Levesque ◽  
Itzhak Fried ◽  
Jerome Engel

Isokawa, Masako, Michel Levesque, Itzhak Fried, and Jerome Engel, Jr. Glutamate currents in morphologically identified human dentate granule cells in temporal lobe epilepsy. J. Neurophysiol. 77: 3355–3369, 1997. Glutamate-receptor-mediated synaptic transmission was studied in morphologically identified hippocampal dentate granule cells (DGCs; n = 31) with the use of whole cell patch-clamp recording and intracellular injection of biocytin or Lucifer yellow in slices prepared from surgically removed medial temporal lobe specimens of epileptic patients (14 specimens from 14 patients). In the current-clamp recording, low-frequency stimulation of the perforant path generated depolarizing postsynaptic potentials that consisted of excitatory postsynaptic potentials and phase-inverted inhibitory postsynaptic potentials mediated by the γ-aminobutyric acid-A (GABAA) receptor at a resting membrane potential of −62.7 ± 2.0 (SE) mV. In the voltage-clamp recording, two glutamate conductances, a fast α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-receptor-mediated excitatory postsynaptic current (EPSC; AMPA EPSC) and a slowly developing N-methyl-d-aspartate (NMDA)-receptor-mediated EPSC (NMDA EPSC), were isolated in the presence of a GABAA receptor antagonist. NMDA EPSCs showed a voltage-dependent increase in conductance with depolarization by exhibiting an N-shaped current-voltage relationship. The slope conductance of the NMDA EPSC ranged from 1.1 to 9.4 nS in 31 DGCs, reaching up to twice the size of the AMPA conductance. This widely varying size of the NMDA conductance resulted in the generation of double-peaked EPSCs and a nonlinear increase of the slope conductance of up to 37.5 nS with positive membrane potentials, which resembled “paroxysmal currents,” in a subpopulation of the neurons. In contrast, AMPA EPSCs, which were isolated in the presence of an NMDA receptor antagonist (2-amino-5-phosphonovaleric acid), showed voltage-independent linear changes in the current-voltage relationship and were blocked by 6-cyano-7-nitroquinoxaline-2,3-dione. The AMPA conductance showed little variance, regardless of the size of the NMDA conductance of a given neuron. The average AMPA slope conductance was 5.28 ± 0.65 (SE) nS in 31 human DGCs. This value was similar to AMPA EPSC conductances in normal rat DGCs (5.35 ± 0.52 nS, mean ± SE; n = 55). Dendritic morphology and spine density were quantified in the individual DGCs to assess epileptic pathology. Dendritic spine density showed an inverse correlation ( r 2 = 0.705) with a slower rise time and a longer half-width of the excitatory postsynaptic potentials mediated by the NMDA receptor. It is concluded that both AMPA and NMDA EPSCs contribute to human DGC synaptic transmission in epileptic hippocampus. However, a wide range of changes in the slope conductance of the NMDA EPSCs suggests that the NMDA-receptor-mediated conductance could be altered in human epileptic DGCs. These changes may influence the generation of chronic subthreshold epileptogenic synaptic activity and give rise to pathological excitation leading to epileptic seizures and dendritic pathology.

Neuroscience ◽  
1998 ◽  
Vol 86 (1) ◽  
pp. 109-120 ◽  
Author(s):  
I Spigelman ◽  
X.-X Yan ◽  
A Obenaus ◽  
E.Y.-S Lee ◽  
C.G Wasterlain ◽  
...  

Neuroscience ◽  
1997 ◽  
Vol 76 (2) ◽  
pp. 377-385 ◽  
Author(s):  
Zs. Maglóczky ◽  
P. Halász ◽  
J. Vajda ◽  
S. Czirják ◽  
T.F. Freund

2006 ◽  
Vol 95 (2) ◽  
pp. 1213-1220 ◽  
Author(s):  
Annalisa Scimemi ◽  
Stephanie Schorge ◽  
Dimitri M. Kullmann ◽  
Matthew C. Walker

The perforant path provides the main excitatory input into the hippocampus and has been proposed to play a critical role in the generation of temporal lobe seizures. It has been hypothesized that changes in glutamatergic transmission in this pathway promote the epileptogenic process and seizure generation. We therefore asked whether epileptogenesis is associated with enhanced glutamatergic transmission from the perforant path to dentate granule cells. We used a rat model of temporal lobe epilepsy in which spontaneous seizures occur after an episode of pilocarpine-induced status epilepticus. Whole cell patch-clamp recordings were obtained from dentate granule cells in hippocampal slices from control and epileptic animals 3 wk after pilocarpine-induced status epilepticus. The paired pulse ratio of perforant path-evoked AMPA receptor-mediated excitatory postsynaptic currents (EPSCs) was reduced in tissue obtained from epileptic rats. This is consistent with an increase in release probability. N-methyl-d-aspartate (NMDA) receptor-mediated EPSCs were also prolonged. This prolongation could not be accounted for by decreased activity of glutamate transporters or by a change in NMDA receptor subunit composition in dentate granule cells, implying a change in NMDA receptor kinetics. This change in NMDA receptor kinetics was associated with the emergence of significant synaptic cross-talk, detected as a use-dependent block of receptors activated by medial perforant path synapses after lateral perforant path stimulation in MK-801. Enhanced glutamatergic transmission and the emergence of cross-talk among perforant path-dentate granule cell synapses may contribute to lowering seizure threshold.


2015 ◽  
Vol 113 (4) ◽  
pp. 1184-1194 ◽  
Author(s):  
A. L. Althaus ◽  
O. Sagher ◽  
J. M. Parent ◽  
G. G. Murphy

Hilar ectopic dentate granule cells (DGCs) are a salient feature of aberrant plasticity in human temporal lobe epilepsy (TLE) and most rodent models of the disease. Recent evidence from rodent TLE models suggests that hilar ectopic DGCs contribute to hyperexcitability within the epileptic hippocampal network. Here we investigate the intrinsic excitability of DGCs from humans with TLE and the rat pilocarpine TLE model with the objective of comparing the neurophysiology of hilar ectopic DGCs to their normotopic counterparts in the granule cell layer (GCL). We recorded from 36 GCL and 7 hilar DGCs from human TLE tissue. Compared with GCL DGCs, hilar DGCs in patient tissue exhibited lower action potential (AP) firing rates, more depolarized AP threshold, and differed in single AP waveform, consistent with an overall decrease in excitability. To evaluate the intrinsic neurophysiology of hilar ectopic DGCs, we made recordings from retrovirus-birthdated, adult-born DGCs 2–4 mo after pilocarpine-induced status epilepticus or sham treatment in rats. Hilar DGCs from epileptic rats exhibited higher AP firing rates than normotopic DGCs from epileptic or control animals. They also displayed more depolarized resting membrane potential and wider AP waveforms, indicating an overall increase in excitability. The contrasting findings between disease and disease model may reflect differences between the late-stage disease tissue available from human surgical specimens and the earlier disease stage examined in the rat TLE model. These data represent the first neurophysiological characterization of ectopic DGCs from human hippocampus and prospectively birthdated ectopic DGCs in a rodent TLE model.


Sign in / Sign up

Export Citation Format

Share Document