Evidence that Ca2+/calmodulin-dependent protein phosphorylation is involved in the opening process of potassium channels in identified snail neurons

1991 ◽  
Vol 124 (1) ◽  
pp. 35-38 ◽  
Author(s):  
Minoru Onozuka ◽  
Hiroyasu Furuichi ◽  
Schizuko Imai ◽  
Yasushi Fukami
FEBS Letters ◽  
1994 ◽  
Vol 350 (2-3) ◽  
pp. 187-191 ◽  
Author(s):  
Zuzana Technikova-Dobrova ◽  
Anna Maria Sardanelli ◽  
Maurizio Rosario Stanca ◽  
Sergio Papa

1991 ◽  
Vol 65 (4) ◽  
pp. 311-317 ◽  
Author(s):  
Prasada Rao S. Kodavanti ◽  
Joseph A. Cameron ◽  
Prabhakara R. Yallapragada ◽  
Parminder J. S. Vig ◽  
Durisala Desaiah

Endocrinology ◽  
1978 ◽  
Vol 103 (6) ◽  
pp. 2334-2341 ◽  
Author(s):  
STEPHEN W. SPAULDING ◽  
ULRICH K. SCHUBART

1992 ◽  
Vol 285 (3) ◽  
pp. 973-978 ◽  
Author(s):  
P M Jones ◽  
S J Persaud ◽  
S L Howell

Increasing the cytosolic Ca2+ concentration of electrically permeabilized rat islets of Langerhans caused rapid increases in insulin secretion and in 32P incorporation into islet proteins. However, the secretory responsiveness of permeabilized islets was relatively transient, with insulin secretion approaching basal levels within 20-30 min despite the continued presence of stimulatory concentrations of Ca2+. The loss of Ca2(+)-induced insulin secretion was accompanied by a marked reduction in Ca2(+)-dependent protein phosphorylation, but not in cyclic AMP-dependent protein phosphorylation. Similarly, permeabilized islets which were no longer responsive to Ca2+ were able to mount appropriate secretory responses to cyclic AMP and to a protein kinase C-activating phorbol ester. These results suggest that prolonged exposure to elevated cytosolic Ca2+ concentrations results in a specific desensitization of the secretory mechanism to Ca2+, perhaps as a result of a decrease in Ca2(+)-dependent kinase activity. Furthermore, these studies suggest that secretory responses of B-cells to cyclic AMP and activators of protein kinase C are not dependent upon the responsiveness of the cells to changes in cytosolic Ca2+.


Sign in / Sign up

Export Citation Format

Share Document