Inward potassium rectifier current in type I vestibular hair cells isolated from guinea pig

1993 ◽  
Vol 149 (1) ◽  
pp. 51-55 ◽  
Author(s):  
Corinne Griguer ◽  
Alain Sans ◽  
Jean Valmier ◽  
Jacques Lehouelleur
1994 ◽  
Vol 23 (10) ◽  
pp. 631-640 ◽  
Author(s):  
C. J. Dechesne ◽  
E. Scarfone ◽  
P. Atger ◽  
G. Desmadryl

1990 ◽  
Vol 46 (1-2) ◽  
pp. 171-176 ◽  
Author(s):  
Anne Didier ◽  
Laurent Decory ◽  
Yves Cazals

1993 ◽  
Vol 5 (9) ◽  
pp. 1210-1217 ◽  
Author(s):  
Gina Devau ◽  
Jacques Lehouelleur ◽  
Alain Sans

1991 ◽  
Vol 1 (3) ◽  
pp. 241-250
Author(s):  
Pascale N.M. Lapeyre ◽  
Yves Cazals

Guinea pig isolated vestibular type I hair cells (VIHCs) were recently reported by our group to respond to high [KCl] solutions by an irreversible tilt of their neck region and sometimes by a sustained shortening and swelling. A possible osmotic contribution to these shape changes was investigated by substituting gluconate (G) for chloride in the test solution, so as to minimize water influx, and also by changing the osmotic pressure of the extracellular solution. For comparison, similar experiments were also undertaken on cochlear outer hair cells (OHCs). Utricular and ampullar type I hair cells were more difficult to isolate than OHCs and, like them, responded to an isotonic high [KCl] solution by a sustained shortening and widening, which were found to be reversible for most cells when rinsed with the control solution. In a high [KG] solution, all OHCs showed a shortening reversible in the test solution; among the VIHCs tested, two-thirds presented a slight sustained shortening without widening and a third showed a spontaneously reversible shortening, particularly at the neck level. VIHCs exposed to a high [N-methyl-D-glucamine chloride] solution, this impermeant cation replacing K+ for control, presented only a slight sustained shortening. In response to osmotic changes of the bathing medium, both VIHCs and OHCs showed a sustained shortening or elongation (the latter to a lesser degree) for hypo- and hyperosmotic solutions, respectively. The VIHCs and OHCs that presented a reversible shortening in a high [KG] solution widened concomitantly with their shortening, but to a smaller extent compared with what was observed in a high [KCl] solution, and this diameter increase was reversible in the test solution, unlike the widening observed in a hypotonic solution. These results show that a reversible shortening occurred for some VIHCs; they also indicate the involvement of two components in the KCl-induced response: one osmotic and another potassium-dependent.


1998 ◽  
Vol 79 (4) ◽  
pp. 2235-2239 ◽  
Author(s):  
John S. Oghalai ◽  
Jeffrey R. Holt ◽  
Takashi Nakagawa ◽  
Thomas M. Jung ◽  
Newton J. Coker ◽  
...  

Oghalai, John S., Jeffrey R. Holt, Takashi Nakagawa, Thomas M. Jung, Newton J. Coker, Herman A. Jenkins, Ruth Anne Eatock, and William E. Brownell. Ionic currents and electromotility in inner ear hair cells from humans. J. Neurophysiol. 79: 2235–2239, 1998. The upright posture and rich vocalizations of primates place demands on their senses of balance and hearing that differ from those of other animals. There is a wealth of behavioral, psychophysical, and CNS measures characterizing these senses in primates, but no prior recordings from their inner ear sensory receptor cells. We harvested human hair cells from patients undergoing surgical removal of life-threatening brain stem tumors and measured their ionic currents and electromotile responses. The hair cells were either isolated or left in situ in their sensory epithelium and investigated using the tight-seal, whole cell technique. We recorded from both type I and type II vestibular hair cells under voltage clamp and found four voltage-dependent currents, each of which has been reported in hair cells of other animals. Cochlear outer hair cells demonstrated electromotility in response to voltage steps like that seen in rodent animal models. Our results reveal many qualitative similarities to hair cells obtained from other animals and justify continued investigations to explore quantitative differences that may be associated with normal or pathological human sensation.


2004 ◽  
Vol 19 (2) ◽  
pp. 155-169 ◽  
Author(s):  
Manning J. Correia ◽  
Thomas G. Wood ◽  
Deborah Prusak ◽  
Tianxiang Weng ◽  
Katherine J. Rennie ◽  
...  

A fast inwardly rectifying current has been observed in some of the sensory cells (hair cells) of the inner ear of several species. While the current was presumed to be an IKir current, contradictory evidence existed as to whether the cloned channel actually belonged to the Kir2.0 subfamily of potassium inward rectifiers. In this paper, we report for the first time converging evidence from electrophysiological, biochemical, immunohistochemical, and genetic studies that show that the Kir2.1 channel carries the fast inwardly rectifying currents found in pigeon vestibular hair cells. Following cytoplasm extraction from single type II and multiple pigeon vestibular hair cells, mRNA was reverse transcribed, amplified, and sequenced. The open reading frame (ORF), consisting of a 1,284-bp nucleotide sequence, showed 94, 85, and 83% identity with Kir2.1 subunit sequences from chick lens, Kir2 sequences from human heart, and a mouse macrophage cell line, respectively. Phylogenetic analyses revealed that pKir2.1 formed an immediate node with hKir2.1 but not with hKir2.2–2.4. Hair cells (type I and type II) and supporting cells in the sensory epithelium reacted positively with a Kir2.1 antibody. The whole cell current recorded in oocytes and CHO cells, transfected with pigeon hair cell Kir2.1 (pKir2.1), demonstrated blockage by Ba2+ and sensitivity to changing K+ concentration. The mean single-channel linear slope conductance in transfected CHO cells was 29 pS. The open dwell time was long (∼300 ms at −100 mV), and the closed dwell time was short (∼34 ms at −100 mV). Multistates ranging from 3–6 were noted in some single-channel responses. All of the above features have been described for other Kir2.1 channels. Current clamp studies of native pigeon vestibular hair cells illustrated possible physiological roles of the channel and showed that blockage of the channel by Ba2+ depolarized the resting membrane potential by ∼30 mV. Negative currents hyperpolarized the membrane ∼20 mV before block but ∼60 mV following block. RT-PCR studies revealed that the pKir2.1 channels found in pigeon vestibular hair cells were also present in pigeon vestibular nerve, vestibular ganglion, lens, neck muscle, brain (brain stem, cerebellum and optic tectum), liver, and heart.


1992 ◽  
Vol 2 (3) ◽  
pp. 181-191
Author(s):  
Hans Peter Zenner ◽  
Günter Reuter ◽  
Shi Hong ◽  
Ulrike Zimmermann ◽  
Alfred H. Gitter

Vestibular hair cells, type I and II, with membrane potentials around -64 mV were prepared from guinea pig ampullar cristae and maculae. In type I cells, current injection, application of voltage steps during membrane patch-clamping, or extracellular alternating current (ac) fields evoked fast length changes of 50 nm to 500 nm of the cell “neck”. Mechanical responses were determined by computerized video techniques with contrast-enhanced digital image subtraction (DIS) and interpeak pixel counts (IPPC) or by double photodiode measurements. These techniques allowed spatial resolutions of 300 nm, 120 nm, and 50 nm, respectively. In contrast to measurements of high-frequency movements of auditory outer hair cells (OHCs), the mechanical responses of type I VHCs were restricted to low frequencies below 85 Hz. In addition to recently reported slow motility of VHCs, the present results suggest that fast mechanical VHC responses could significantly influence macular and cupular mechanics. Isometric and isotonic variants are discussed. The observed frequency maxima gap between VHCs and OHCs is suggested to contribute to a clear separation of the auditory and the vestibular sensory modality.


Sign in / Sign up

Export Citation Format

Share Document