Stem elongation and flowering of the long-day plant Campanula isophylla Moretti in response to day and night temperature alternations and light quality

1991 ◽  
Vol 48 (1-2) ◽  
pp. 141-151 ◽  
Author(s):  
Roar Moe ◽  
Royal D. Heins ◽  
John Erwin
HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 544D-544 ◽  
Author(s):  
Erik S. Runkle ◽  
Royal D. Heins

For many plants, light quality has a pronounced effect on plant morphology; light with a low red (R, 600 to 700 nm) to far-red (FR, 700 to 800 nm) ratio promotes stem elongation and a high R: FR, or blue light (B, 400 to 500 nm), suppresses it. In addition, FR light is required for rapid flowering in some species, particularly for long-day plants. Our objective was to quantify how flexible spectral filters, which selectively reduce FR, B, or R, influence plant height and flowering of the quantitative long-day plants Pisum sativum L. `Utrillo' and Viola ×wittrockiana Gams. `Crystal Bowl Yellow'. Plants were grown at 20 °C with reduced FR, B, or R environments or with a neutral density control (C) filter. Calculated phytochrome photoequilebria were 0.78, 0.73, 0.71, or 0.46 for the altered FR, B, C, or R environments, respectively. All filter treatments transmitted a similar photosynthetic photon flux. Sixteen-hour photoperiods were created with natural daylight supplemented with high-pressure sodium lamps positioned above filters. Viola grown under the FR filter never reached 100% flowering within 8 weeks, and visible bud appearance was delayed by at least 17 days compared to all other filters. The R and B filters enhanced peduncle length by at least 25% compared to the C or FR filters. In Pisum, average internode length was 2.2, 2.9, 3.4, and 3.7 cm under the FR, C, B, and R filters, respectively, all statistically different. Fresh and dry shoot weights were similar under the C and FR filters but were at least 35% greater under the B filter and 35% lower under the R filter.


HortScience ◽  
1993 ◽  
Vol 28 (9) ◽  
pp. 888-890 ◽  
Author(s):  
Peter R. Hicklenton ◽  
Suzie M. Newman ◽  
Lindsay J. Davies

The effects of night temperature (NT) and photosynthetic photon flux (PPF) on time to flower and flower yield in `Bristol Fairy' and `Bridal Veil' Gypsophila paniculata L. (perennial baby's breath) were studied in controlled environments. Plants were grown with nights at 8, 12, 16, and 20C and 450 or 710 μmol·s-1·m-2 photosynthetic photon flux (PPF). Days were at 20C. In both cultivars, the times from the start of treatments to visible bud and from visible bud to anthesis were delayed at the lower PPF and at an NT <20C. The delays in `Bristol Fairy' were greater than those in `Bridal Veil'. Failure of `Bristol Fairy' plants to reach anthesis was common at SC NT and either 450 or 710 μmol·s-1·m-2 PPF; whereas in `Bridal Veil', nearly all plants flowered, regardless of environmental conditions. Flower yield (measured as fresh weight of inflorescences) decreased with NT in `Bristol Fairy' but was highest at 8 or 12C in `Bridal Veil'. In a second experiment using the same cultivars, the effect of curtailing long-day (LD) conditions at various stages on stem elongation and flower yield was investigated. `Bristol Fairy' required more LD cycles (>56) than `Bridal Veil' for maximum stem elongation and flower yield. Terminating LD conditions before the start of inflorescence expansion resulted in lower yields and shorter plants in both cultivars.


1973 ◽  
Vol 21 (4) ◽  
pp. 245-255
Author(s):  
S.J. Wellensiek

Several selected S. armeria lines differing in their reaction to GA3 were treated with GA3 at various concentrations under short-day (SD) or long-day conditions. With SD treatment one application of GA3 at high concentration (10 000 p.p.m. or greater) induced flower formation in certain lines. Stem elongation increased with GA3 concentration and with plant age and was much greater on flowering plants than on non-flowering ones. [For previous related work see HcA 41, 4400.]. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2009 ◽  
Vol 2 (2) ◽  
pp. 72-77
Author(s):  
Hiroshi Shimizu ◽  
Yukari Tsushima ◽  
Naoshi Kondo ◽  
Tomoo Shiigi ◽  
Takahisa Nishizu ◽  
...  

Weed Science ◽  
2004 ◽  
Vol 52 (2) ◽  
pp. 267-270 ◽  
Author(s):  
J. Scott McElroy ◽  
Fred H. Yelverton ◽  
Joseph C. Neal ◽  
Thomas W. Rufty

Experiments were conducted in environmental chambers to the evaluate effects of photoperiod and temperature on Florida betony growth and development. Plants were exposed to two photoperiods, short day (9 h) and long day (9 + 3 h night interruption), and three day/night temperature regimes, 18/14, 22/18, and 26/22 C. After 10 wk of growth, shoot length and weight were 3.4 and 3.5 times greater, respectively, in the long-day photoperiod and with the 26 and 22 than with the 22 and 18 C day and night temperature regime, respectively. Shoot number, however, was greatest in the short-day photoperiod and at a lower temperature of 22/18 C. Shoot number in long day 22/18 C and 26/22 C environments increased asymptotically. No difference in root weight was observed between long- and short-day environments, but root weight increased with increasing temperature. Flowering and tuber production only occurred in long-day environments, with greater production of both at higher temperatures. Results provide a general framework for understanding Florida betony growth and development characteristics in the field and provide insights that should be considered in developing control strategies.


2007 ◽  
Vol 97 (8) ◽  
pp. 979-986 ◽  
Author(s):  
Berit Nordskog ◽  
David M. Gadoury ◽  
Robert C. Seem ◽  
Arne Hermansen

We evaluated direct and interactive effects of light quality and intensity, temperature and light, diurnal rhythms, and timing of high relative humidity during long day lengths on sporulation of Bremia lactucae, the causal agent of lettuce downy mildew, using inoculated lettuce seedlings and detached cotyledons. Suppression of sporulation by light was strongly dependent upon temperature and there was little suppression at ≤10°C. The most suppressive waveband was in the range from 400 to 450 nm, although a lesser effect of wavebands from 450 to 500 and 500 to 550 nm could be detected. At 15°C, near the lower threshold for suppression of sporulation by light, a clear diurnal pattern of sporulation was observed independent of light and darkness. This diurnal rhythm potentially could interact with light and temperature to confound the results of controlled environment studies, and may be the controlling factor in timing of sporulation at low temperatures. Forecasting models that currently use sunrise and sunset to delimit periods conducive to sporulation can be adapted to short nights and extended twilight conditions by incorporating the effects reported herein. Additionally, models of sporulation could be adapted to better reflect a decrease or absence of the suppressive effect of light at <15°C.


2010 ◽  
Vol 63 (3) ◽  
pp. 291-300 ◽  
Author(s):  
Wenze Li ◽  
Zihong Song ◽  
R. J. Neil Emery ◽  
C. C. Chinnappa

Sign in / Sign up

Export Citation Format

Share Document