plant morphology
Recently Published Documents


TOTAL DOCUMENTS

659
(FIVE YEARS 179)

H-INDEX

40
(FIVE YEARS 5)

2022 ◽  
Vol 313 ◽  
pp. 108722
Author(s):  
Lento Manickathan ◽  
Thijs Defraeye ◽  
Stephan Carl ◽  
Henning Richter ◽  
Jonas Allegrini ◽  
...  

2022 ◽  
Vol 292 ◽  
pp. 110645
Author(s):  
Davy Meijer ◽  
Mara Meisenburg ◽  
Joop J.A. van Loon ◽  
Marcel Dicke

2022 ◽  
Vol 175 ◽  
pp. 114245
Author(s):  
Katarzyna Wielgusz ◽  
Marcin Praczyk ◽  
Lidia Irzykowska ◽  
Dariusz Świerk

2021 ◽  
Vol 12 ◽  
Author(s):  
Ken Hoshikawa ◽  
Dung Pham ◽  
Hiroshi Ezura ◽  
Roland Schafleitner ◽  
Kazuo Nakashima

Climate change is a major threat to global food security. Changes in climate can directly impact food systems by reducing the production and genetic diversity of crops and their wild relatives, thereby restricting future options for breeding improved varieties and reducing the ability to adapt crops to future challenges. The global surface temperature is predicted to rise by an average of 0.3°C during the next decade, and the Paris Agreement (Paris Climate Accords) aims to limit global warming to below an average of 2°C, preferably to 1.5°C compared to pre-industrial levels. Even if the goal of the Paris Agreement can be met, the predicted rise in temperatures will increase the likelihood of extreme weather events, including heatwaves, making heat stress (HS) a major global abiotic stress factor for many crops. HS can have adverse effects on plant morphology, physiology, and biochemistry during all stages of vegetative and reproductive development. In fruiting vegetables, even moderate HS reduces fruit set and yields, and high temperatures may result in poor fruit quality. In this review, we emphasize the effects of abiotic stress, especially at high temperatures, on crop plants, such as tomatoes, touching upon key processes determining plant growth and yield. Specifically, we investigated the molecular mechanisms involved in HS tolerance and the challenges of developing heat-tolerant tomato varieties. Finally, we discuss a strategy for effectively improving the heat tolerance of vegetable crops.


2021 ◽  
Vol 22 (24) ◽  
pp. 13250
Author(s):  
Shuwei Chang ◽  
Zhanhong Ren ◽  
Chang Liu ◽  
Pingzhou Du ◽  
Jingbin Li ◽  
...  

The actin cytoskeleton is crucial for plant morphogenesis, and organization of actin filaments (AF) is dynamically regulated by actin-binding proteins. However, the roles of actin-binding proteins, particularly type II formins, in this process remain poorly understood in plants. Here, we report that a type II formin in rice, Oryza sativa formin homolog 3 (OsFH3), acts as a major player to modulate AF dynamics and contributes to rice morphogenesis. osfh3 mutants were semi-dwarf with reduced size of seeds and unchanged responses to light or gravity compared with mutants of osfh5, another type II formin in rice. osfh3 osfh5 mutants were dwarf with more severe developmental defectiveness. Recombinant OsFH3 could nucleate actin, promote AF bundling, and cap the barbed end of AF to prevent elongation and depolymerization, but in the absence of profilin, OsFH3 could inhibit AF elongation. Different from other reported type II formins, OsFH3 could bind, but not bundle, microtubules directly. Furthermore, its N-terminal phosphatase and tensin homolog domain played a key role in modulating OsFH3 localization at intersections of AF and punctate structures of microtubules, which differed from other reported plant formins. Our results, thus, provide insights into the biological function of type II formins in modulating plant morphology by acting on AF dynamics.


2021 ◽  
Author(s):  
Dadong Li ◽  
El-Hadji Malick Cisse ◽  
Luyao Guo ◽  
Juan Zhang ◽  
Lingfeng Miao ◽  
...  

Abstract Cleistocalyx operculatus and Syzygium cumini possess a certain waterlogging tolerance. However, the comparable and adaptable strategies to waterlogging stress between these two species on the basis of waterlogging adventitious root (AR) regulation were still unclear. In this study, the plant performances in response to AR regulation based on AR removal and exogenous hormone application were investigated in terms of plant morphology, physiology, photosynthesis, and AR traits. Results showed that C. operculatus possesses stronger waterlogging tolerance than S. cumini based on waterlogging tolerance coefficient, which is mainly due to the higher root biomass, root porosity, and length and activity of ARs, and shorter emergence time of ARs in C. operculatus than in S. cumini. The AR-R treatment increased activity and porosity of primary root, and induce a large amount of up-vertical ARs from the primary root systems in C. operculatus, while similar adaptive morphological changes in roots did not occur in AR-R treated S. cumini. Exogenous ABA application had better effects on alleviating waterlogging damages than exogenous IAA in balancing endogenous hormones (ABA and ZR), promoting ARs development (porosity and activity, and the ratio of cortex area to stele area), improving photosynthesis process and antioxidant system (soluble protein, free proline, and peroxidase). Moreover, under waterlogging conditions, exogenous ABA application induced greater increases in net photosynthesis rate (A), stomatal conductance (gs), chlorophyll b (Chl b), and carotenoid (Caro) in S. cumini than in C. operculatus, which suggested that S. cumini responded more positively and efficiently to exogenous ABA application than C. operculatus under waterlogging conditions. Thus, the findings provided new insights into the waterlogging adaptable strategies in waterlogging tolerant woody species on the basis of ARs, and could provide scientific guidance for the application of these two species during revegetation activities in wetlands.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Polina Kurtser ◽  
Victor Castro-Alves ◽  
Ajay Arunachalam ◽  
Viktor Sjöberg ◽  
Ulf Hanell ◽  
...  

AbstractThis research evaluates the effect on herbal crops of mechanical stress induced by two specially developed robotic platforms. The changes in plant morphology, metabolite profiles, and element content are evaluated in a series of three empirical experiments, conducted in greenhouse and CNC growing bed conditions, for the case of basil plant growth. Results show significant changes in morphological features, including shortening of overall stem length by up to 40% and inter-node distances by up to 80%, for plants treated with a robotic mechanical stress-induction protocol, compared to control groups. Treated plants showed a significant increase in element absorption, by 20–250% compared to controls, and changes in the metabolite profiles suggested an improvement in plants’ nutritional profiles. These results suggest that repetitive, robotic, mechanical stimuli could be potentially beneficial for plants’ nutritional and taste properties, and could be performed with no human intervention (and therefore labor cost). The changes in morphological aspects of the plant could potentially replace practices involving chemical treatment of the plants, leading to more sustainable crop production.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marcus G. Heisler

Over the last decade or so important progress has been made in identifying and understanding a set of patterning mechanisms that have the potential to explain many aspects of plant morphology. These include the feedback loop between mechanical stresses and interphase microtubules, the regulation of plant cell polarity and the role of adaxial and abaxial cell type boundaries. What is perhaps most intriguing is how these mechanisms integrate in a combinatorial manner that provides a means to generate a large variety of commonly seen plant morphologies. Here, I review our current understanding of these mechanisms and discuss the links between them.


Author(s):  
C. Guy ◽  
T. J. Gilliland ◽  
D. Hennessy ◽  
F. Coughlan ◽  
B. McCarthy

White clover (Trifolium repens L.) is at a disadvantage to perennial ryegrass (Lolium perenne L.; PRG) due to its limited cold tolerance and low growth rates at colder temperatures, which can affect subsequent spring herbage dry matter (DM) availability. The effect of PRG ploidy on white clover morphology and growth over winter, and its subsequent recovery in spring and the following growing season, is poorly understood. The objective of this study was to compare the effect of white clover inclusion and PRG ploidy on sward structure, plant morphology and growth of PRG–white clover swards over winter. Four swards (diploid PRG only, tetraploid PRG only, diploid PRG–white clover and tetraploid PRG–white clover) were evaluated over a full winter period (November–February) at a farmlet scale. The PRG ploidy had no effect on herbage DM production, white clover content or tissue turnover (P > 0.05) over winter. However, white clover inclusion caused a significant decrease in herbage DM production (P < 0.001; −254 kg DM/ha) and tiller density (P < 0.001; −1,953 tillers/m2) over winter. Stolon mass was not affected by PRG ploidy (P > 0.05); however, stolon length and number of leaves per stolon were affected by PRG ploidy (P < 0.05). Including white clover in PRG swards can alter winter sward dynamics, potentially causing difficulties in subsequent spring management and performance due to the reduced over-winter growth rate when compared with PRG.


Sign in / Sign up

Export Citation Format

Share Document