Purification of Fd—glutamate synthase from Monoraphidium braunii and characterization of a light-dependent activity assay

1994 ◽  
Vol 89 (1-2) ◽  
pp. 257-266 ◽  
Author(s):  
A.J. Vigara ◽  
M.T. Bes ◽  
J.M. Vega ◽  
C. Gómez-Moreno
2004 ◽  
Vol 186 (14) ◽  
pp. 4620-4627 ◽  
Author(s):  
Wakao Fukuda ◽  
Toshiaki Fukui ◽  
Haruyuki Atomi ◽  
Tadayuki Imanaka

ABSTRACT Phosphoenolpyruvate carboxykinase (PCK), which catalyzes the nucleotide-dependent, reversible decarboxylation of oxaloacetate to yield phosphoenolpyruvate and CO2, is one of the important enzymes in the interconversion between C3 and C4 metabolites. This study focused on the first characterization of the enzymatic properties and expression profile of an archaeal PCK from the hyperthermophilic archaeon Thermococcus kodakaraensis (Pck Tk ). Pck Tk showed 30 to 35% identities to GTP-dependent PCKs from mammals and bacteria but was located in a branch distinct from that of the classical enzymes in the phylogenetic tree, together with other archaeal homologs from Pyrococcus and Sulfolobus spp. Several catalytically important regions and residues, found in all known PCKs irrespective of their nucleotide specificities, were conserved in Pck Tk . However, the predicted GTP-binding region was unique compared to those in other GTP-dependent PCKs. The recombinant Pck Tk actually exhibited GTP-dependent activity and was suggested to possess dual cation-binding sites specific for Mn2+ and Mg2+. The enzyme preferred phosphoenolpyruvate formation from oxaloacetate, since the Km value for oxaloacetate was much lower than that for phosphoenolpyruvate. The transcription and activity levels in T. kodakaraensis were higher under gluconeogenic conditions than under glycolytic conditions. These results agreed with the role of Pck Tk in providing phosphoenolpyruvate from oxaloacetate as the first step of gluconeogenesis in this hyperthermophilic archaeon. Additionally, under gluconeogenic conditions, we observed higher expression levels of Pck Tk on pyruvate than on amino acids, implying that it plays an additional role in the recycling of excess phosphoenolpyruvate produced from pyruvate, replacing the function of the anaplerotic phosphoenolpyruvate carboxylase that is missing from this archaeon.


Author(s):  
J. U. Na ◽  
H. Youn ◽  
S.-H. Cho ◽  
C.-S. Hwang ◽  
Y.-C. Hah ◽  
...  

2019 ◽  
Vol 116 (3) ◽  
pp. 83a ◽  
Author(s):  
Luis Santiago-Ortiz ◽  
Morgan Hitchner ◽  
Thaddeus Palmer ◽  
Gregory A. Caputo

1997 ◽  
Vol 52 (11-12) ◽  
pp. 740-746 ◽  
Author(s):  
Röbbe Wünschiers ◽  
Thomas Zinn ◽  
Dietmar Linder ◽  
Rüdiger Schulz

Abstract Purification of a soluble cytochrome c6 from the unicellular green alga Scenedesmus obliquus by a simple and rapid method is described. The purification procedure includes ammonium sulfate precipitation and non-denaturating PAGE. The N-terminal sequence of the first 20 amino acids was determined and shows 85% similarity and 75% identity to the sequence of cytochrome c6 from the green alga Monoraphidium braunii. The ferrocyto-chrome shows typical UV/VIS absorption peaks at 552.9, 521.9 and 415.7 nm. The apparent molecular mass was estimated to be 12 kD a by SDS-PAGE. EPR-spectroscopy at 20K shows resonances indicative for two distinct low-spin heme forms.


Sign in / Sign up

Export Citation Format

Share Document