Proteolytic cleavage of band 3 protein in relation to anion transport in fish (Oncorhynchus mykiss) red blood cells

Author(s):  
L. Romano ◽  
A. Scuteri ◽  
M. Mandolfino ◽  
F. Michel ◽  
V. Rudloff
1984 ◽  
Vol 246 (3) ◽  
pp. C330-C338 ◽  
Author(s):  
L. Romano ◽  
H. Passow

Anion transport in the trout red blood cell is mediated by a membrane protein that selectively binds dihydro-4,4'-dithiocyanostilbene-2,2'-disulfonic acid (3H2DIDS) and that forms on sodium dodecyl sulfate (SDS)-polyacrylamide gel electropherograms a band with the same diffuse structure at the same location as the band 3 protein of the mammalian red blood cells. There exists a linear relationship between binding of H2DIDS to this protein and the inhibition of anion equilibrium exchange. At maximal inhibition about 8 X 10(6) molecules/cell are bound to the protein. The kinetics of anion transport in the trout red blood cell differ from those of mammalian red blood cells. In addition to a H2DIDS-sensitive component of sulfate transport there exists a considerable H2DIDS-insensitive component with a relative magnitude that decreases with increasing temperature. At 23 degrees C, it amounts to about 25%. The temperature dependence of the H2DIDS-sensitive component is about 15 kcal/mol instead of 32 as in human red blood cells. Cl- transport increases with increasing pH. Above pH 7.4, the rate of transport becomes too fast to be measurable with either inhibitor stop or filtration technique. SO2-4 transport is nearly pH independent over the pH range 6.5 to 7.8 and the net entry of SO2-4 in exchange against intracellular Cl-, as followed in the absence of CO2, is accompanied by little if any proton uptake. Net proton uptake becomes measurable only at temperatures above 40 degrees C. Possibly at lower and more physiological temperatures, the band 3 protein in the red blood cell of the trout accomplishes part of the SO2-4 movements without cotransporting protons.


1983 ◽  
Vol 244 (1) ◽  
pp. C68-C74 ◽  
Author(s):  
F. Y. Law ◽  
R. Steinfeld ◽  
P. A. Knauf

Human K562 leukemic cells exhibit several erythroid properties, including synthesis and expression of the major red blood cell sialoglycoprotein, glycophorin. This has led us to ask if these cells express a functional anion transport system analogous to that which is associated with the other major erythrocyte glycoprotein, band 3. The chloride-36 exchange flux in K562 cells is less than 0.6% of that which would be expected in mature erythrocytes under similar conditions. Unlike red blood cells, K562 cells do not exhibit a high chloride-sulfate selectivity, and various agents that inhibit red blood cell chloride exchange are all much less effective in K562 cells. On the basis of these flux measurements, K562 cells probably contain less than 600 fully functional red blood cell-like band 3 molecules per cell, in contrast to about a million molecules in the mature red blood cell. The possible-existence of greatly altered band 3 molecules with a reduced turnover rate and/or a reduced affinity for chloride and for various inhibitors is unlikely but cannot be completely excluded. Anion transport was also measured in K562 cells that had been induced to increase hemoglobin synthesis by various chemical agents. Even under these conditions, chloride fluxes indicated no substantial increase in the number of functional anion transport sites or their chloride transport rate.


2010 ◽  
Vol 391 (9) ◽  
Author(s):  
Antonio Galtieri ◽  
Ester Tellone ◽  
Silvana Ficarra ◽  
Annamaria Russo ◽  
Ersilia Bellocco ◽  
...  

AbstractResveratrol, an important phytoalexine found in many plants, has been shown to be significantly effective in the treatment of several pathological conditions such as cancer, coronary heart disease and osteoarthritis. This study focuses on the effects of this drug on human red blood cells. In particular, we have examined the influence of resveratrol on Band 3, the anion exchanger protein, and hemoglobin as a function of the oxygenation-deoxygenation cycle. Moreover, special attention has been given to the metabolic changes imposed by caspase 3 activation. Resveratrol has proved to lower superoxide production, thereby decreasing heme-iron oxidation and saving the reducing power required for met-hemoglobin reduction. Oxygen binding experiments showed that resveratrol interacts with hemoglobin, shifting the T→R conformational transition towards the higher-affinity R state. This might contribute to altering the metabolic balance of the cell through an intensification of the pentose phosphate pathway. Moreover, at high oxygenation levels of the erythrocytic hemoglobin, resveratrol induces a significant activation of caspase 3, the action of which on Band 3 has a strong impact on cellular metabolism and anion transport.


2007 ◽  
Vol 75 (4) ◽  
pp. 1771-1777 ◽  
Author(s):  
Alexander Luginbühl ◽  
Milica Nikolic ◽  
Hans Peter Beck ◽  
Mats Wahlgren ◽  
Hans U. Lutz

ABSTRACT Rosetting of Plasmodium falciparum-infected red blood cells (parasitized RBC [pRBC]) with uninfected RBC has been associated in many studies with malaria morbidity and is one form of cytoadherence observed with malarial parasites. Rosetting is serum dependent for many isolates of P. falciparum, including the strains FCR3S1.2 and Malayan Camp studied here. We identified the three naturally occurring components of sera which confer rosetting. Complement factor D alone induced 30 to 40% of de novo rosetting. Its effect was additive to that of 0.5 mg/ml albumin and to that of 15 ng/ml of naturally occurring antibodies to the anion transport protein, band 3. The three components together mediated rosetting as effectively as 10% serum. De novo rosetting experiments showed that naturally occurring anti-band 3 antibodies as well as factor D were effective only when added to pRBC. Factor D appeared to cleave a small fraction of a protein expressed on the surface of pRBC.


Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 916-922 ◽  
Author(s):  
LJ Bruce ◽  
JD Groves ◽  
Y Okubo ◽  
B Thilaganathan ◽  
MJ Tanner

The anion transport activity of the human erythrocyte anion transporter (band 3; AE1) has been examined in both normal and glycophorin A (GPA)- deficient (MkMk) human red blood cells (RBCs). The sulfate transport activity of MkMk cells (from two ethnically diverse sources) was approximately 60% that of normal erythrocytes under the transport assay conditions used. However, MkMk and normal RBCs contained similar amounts of band 3. The reduction in sulfate transport activity was shown to be caused by an increase in the apparent Km for sulfate in MkMk RBCs, suggesting the band 3 in the MkMk RBCs has a lowered binding affinity for sulfate anions. The size of the N-glycan chain on band 3 of the MkMk cells was larger than that on band 3 from normal RBCs. In contrast, the size of the N-glycan chain on the glucose transporter (GLUT1) from MkMk cells was smaller than that on GLUT1 from normal cells. The possible role of GPA in the biosynthesis and anion transport activity of band 3 in normal RBCs is discussed.


Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 916-922 ◽  
Author(s):  
LJ Bruce ◽  
JD Groves ◽  
Y Okubo ◽  
B Thilaganathan ◽  
MJ Tanner

Abstract The anion transport activity of the human erythrocyte anion transporter (band 3; AE1) has been examined in both normal and glycophorin A (GPA)- deficient (MkMk) human red blood cells (RBCs). The sulfate transport activity of MkMk cells (from two ethnically diverse sources) was approximately 60% that of normal erythrocytes under the transport assay conditions used. However, MkMk and normal RBCs contained similar amounts of band 3. The reduction in sulfate transport activity was shown to be caused by an increase in the apparent Km for sulfate in MkMk RBCs, suggesting the band 3 in the MkMk RBCs has a lowered binding affinity for sulfate anions. The size of the N-glycan chain on band 3 of the MkMk cells was larger than that on band 3 from normal RBCs. In contrast, the size of the N-glycan chain on the glucose transporter (GLUT1) from MkMk cells was smaller than that on GLUT1 from normal cells. The possible role of GPA in the biosynthesis and anion transport activity of band 3 in normal RBCs is discussed.


Sign in / Sign up

Export Citation Format

Share Document