The effects of gamma-hydroxybutyrate on the membrane properties of guinea-pig pars compacta neurons in the substantia nigra in vitro

Neuroscience ◽  
1989 ◽  
Vol 31 (2) ◽  
pp. 363-370 ◽  
Author(s):  
N.C. Harris ◽  
C. Webb ◽  
S.A. Greenfield
1990 ◽  
Vol 259 (6) ◽  
pp. L403-L409 ◽  
Author(s):  
A. C. Myers ◽  
B. J. Undem ◽  
D. Weinreich

Active and passive membrane membrane properties of parasympathetic neurons were examined in vitro in a newly localized ganglion on the right bronchus of the guinea pig. Neurons could be classified as “tonic” or “phasic” based on their action potential discharge response to suprathreshold depolarizing constant current steps. Tonic neurons (39%) responded with repetitive action potentials sustained throughout the current step, whereas phasic neurons (61%) responded with an initial burst of action potentials at the onset of the step but then accommodated. Tonic and phasic neurons could not be differentiated by other active or passive membrane properties. Electrical stimulation of the vagus nerve elicited one to three temporally distinct fast nicotinic excitatory potentials, and tetanic stimulation of the vagus nerve evoked slow depolarizing (10% of neurons) and hyperpolarizing (25% of neurons) potentials; the latter was mimicked by muscarinic receptor activation. Similar slow and fast postsynaptic potentials were observed in both tonic and phasic neurons. We suggest neurons within the bronchial ganglion possess membrane and synaptic properties capable of integrating presynaptic stimuli.


1995 ◽  
Vol 74 (6) ◽  
pp. 2366-2378 ◽  
Author(s):  
N. C. Harris ◽  
A. Constanti

1. The effects of the novel bradycardic agent 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride (ZD 7288) (Zeneca) were investigated on the hyperpolarization-activated cationic current (Ih) in guinea pig substantia nigra pars compacta neurons in vitro, using a single-microelectrode current-clamp/voltage-clamp technique. 2. Under current-clamp conditions, injection of large negative current pulses (0.1-0.5 nA, 400 ms) evoked a slow depolarizing "sag" in the electrotonic potential due to activation of the slow inward (anomalous) rectifier. In voltage-clamp recordings, hyperpolarizing voltage steps from a holding potential of -60 mV (close to resting potential) elicited slow inward current relaxations with kinetic properties similar to those seen for other neuronal Ihs. 3. ZD 7288 (10-100 microM) produced a consistent abolition of the electrotonic potential sag with no effect on membrane potential or spike properties. Under voltage clamp, Ih amplitude was clearly reduced in a time- and concentration-dependent manner (apparent half-maximum blocking concentration = 2 microM); full block of Ih was typically achieved after 10-15 min of exposure to 50 microM ZD 7288, with no significant recovery observed after 1 h of washing. 4. A similar (although more rapid) block of Ih was seen after application of 3-5 mM Cs+ (partially reversible after 30 min of washing). 5. Partial block of Ih by 10 microM ZD 7288 was accompanied by a reduction in the maximum amplitude of the Ih activation curve, a small negative shift in its position on the voltage axis, and a linearization of the steady-state current-voltage relationship. The estimated Ih reversal potential, however, remained unaffected. 6. In 10 microM ZD 7288, the time course of Ih activation and deactivation was significantly slowed (within the range of -70 to -120 mV for the activation time constant and -70 to -90 mV for the inactivation time constant). 7. Blockade of Ih by ZD 7288 or Cs+ was independent of prior Ih activation (i.e., non-use dependent). 8. Intracellular loading with ZD 7288 also abolished the sag in the electrotonic voltage response and Ih relaxations, suggesting an intracellular site of action. By contrast, intracellular Cs+ had no effect on Ih properties. 9. Block of Ih by ZD 7288 (but not Cs+) was relieved by prolonged cell hyperpolarization, manifested as a slowly developing (half-time approximately 20 s) inward current at a holding potential of -100 mV. 10. We propose that ZD 7288, when applied externally, may behave as a "lipophilic" quaternary cation, capable of passing into the cell interior to block Ih channels in their closed state; this compound may thus prove a useful research tool, in place of Cs+, for studying the properties and significance of Ih currents in controlling neuronal function.


1989 ◽  
Vol 61 (4) ◽  
pp. 769-779 ◽  
Author(s):  
N. Uchimura ◽  
H. Higashi ◽  
S. Nishi

1. The membrane properties and synaptic responses of guinea pig nucleus accumbens neurons in vitro were studied with intracellular recording methods. 2. The population of neurons could be divided into groups of low (20-60 M omega, average 46.5 M omega) and high (60-180 M omega, average 96.5 M omega) input resistance. The resting membrane potential in both groups was approximately -70 mV. 3. Other membrane properties were quite similar in both groups. Inward rectification occurred at potentials more negative than -80 mV; this was blocked by Cs+ (2 mM). Membrane potential oscillations were observed at potentials between -65 and -55 mV; these were blocked by tetrodotoxin (TTX, 0.5 microM). Outward rectification occurred at potentials less negative than -45 mV; this was depressed by tetraethylammonium (TEA, 10 mM). 4. Action potentials elicited by small depolarizing current pulses (2-5 ms, 0.3-0.5 nA) were approximately 95 mV in amplitude and 1.0 ms in duration. The afterhyperpolarization following each action potential was less than 30 ms in duration, and no accommodation of action-potential discharge was seen at frequencies up to 40 Hz. The action potentials were reversibly blocked by TTX (0.3 microM). In addition, TTX-insensitive, Ca2+-dependent spikes were evoked by passing larger and more prolonged current pulses (greater than 40 ms, greater than 0.5 nA) across the membrane. 5. Focal electrical stimulation of the slice surface with low intensity (1 ms, less than 10 V) elicited excitatory postsynaptic potentials (EPSPs) in neurons of both high- and low-resistance groups. The reversal potential (+10.2 mV) for the EPSPs was close to the reversal potential (+7.7 mV) of the responses to glutamate applied in the superfusing solution. The N-methyl-D-aspartic acid (NMDA) receptor antagonists, D-alpha-aminoadipic acid (1 mM) and DL-2-amino-5-phosphonovaleric acid (DL-APV, 250 microM), reversibly depressed the EPSP; the glutamate uptake inhibitor, L-aspartic acid-beta-hydroxamate (50 microM), or removal of Mg2+ from the superfusate, augmented the EPSP. 6. When the intensity of the focal stimulus was increased (1 ms, greater than or equal to 10 V), a second larger depolarizing response (duration, 800 ms to 2 s) could be evoked in addition to the smoothly graded EPSP. This was seen only in cells of the high-resistance group (90-130 M omega).(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 82 (6) ◽  
pp. 2903-2913 ◽  
Author(s):  
S. Nedergaard

Slow, pacemaker-like firing is due to intrinsic membrane properties in substantia nigra compacta (SNc) neurons in vitro. How these properties interact with afferent synaptic inputs is not fully understood. In this study, intracellular recordings from SNc neurons in brain slices showed that spontaneous action potentials (APs) were attenuated when generated from lower than normal threshold. Such APs were blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and could be related to non– N-methyl-d-aspartate (NMDA) receptor–mediated spontaneous excitatory postsynaptic potentials (EPSPs). The AP attenuation was reproduced by stimulus-evoked EPSPs and by current injections to the soma. APs evoked from holding potentials between −40 and −60 mV were reduced in width by Cd2+ (0.2 mM). Tetraethylammonium chloride (TEA, 10 mM) or 4-aminopyridine (4-AP, 5 mM) increased the AP width. However, at more negative holding potentials, Cd2+ and TEA were inefficacious, whereas 4-AP enlarged the AP, partly via induction of a Cd2+-sensitive component. A monophasic afterhyperpolarization (AHP), following attenuated APs, was little affected by either Cd2+ or TEA, but inhibited by 4-AP, which induced an additional, slow component, sensitive to Cd2+ or apamin (100 nM). The AP delay showed a discontinuous relation to the amplitude or slope of the injected current (delay shift), which was sensitive to low doses of 4-AP (0.05 mM). The initial time window before the delay shift was longer than the rise time of EPSPs. It is suggested that a 4-AP–sensitive current prevents or postpones discharge during slow depolarization's, but allows direct excitation by fast EPSPs. Fast excitation leads to AP attenuation, primarily due to strong activation of 4-AP–sensitive current. This seems to cause inhibition of the Ca2+ current during the AP and reduction of Ca2+-dependent K+ currents. Together, these properties are likely to influence the excitability and the local, somatodendritic effects of the AP, in a manner that discriminates between firing induced by the intrinsic pacemaker mechanism and fast synaptic potentials.


Sign in / Sign up

Export Citation Format

Share Document