zd 7288
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 1)

H-INDEX

13
(FIVE YEARS 0)

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Karl Yomar Bosque-Cordero ◽  
Rafael Vazquez-Torres ◽  
Cristhian Calo-Guadalupe ◽  
Daisy Consuegra-Garcia ◽  
Giulia Fois ◽  
...  

2016 ◽  
Vol 311 (4) ◽  
pp. H892-H903 ◽  
Author(s):  
Daniela Negrini ◽  
Cristiana Marcozzi ◽  
Eleonora Solari ◽  
Elena Bossi ◽  
Raffaella Cinquetti ◽  
...  

Diaphragmatic lymphatic function is mainly sustained by pressure changes in the tissue and serosal cavities during cardiorespiratory cycles. The most peripheral diaphragmatic lymphatics are equipped with muscle cells (LMCs), which exhibit spontaneous contraction, whose molecular machinery is still undetermined. Hypothesizing that spontaneous contraction might involve hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in lymphatic LMCs, diaphragmatic specimens, including spontaneously contracting lymphatics, were excised from 33 anesthetized rats, moved to a perfusion chamber containing HEPES-Tyrode's solution, and treated with HCN channels inhibitors cesium chloride (CsCl), ivabradine, and ZD-7288. Compared with control, exposure to 10 mM CsCl reduced (−65%, n = 13, P < 0.01) the contraction frequency (FL) and increased end-diastolic diameter (DL-d, +7.3%, P < 0.01) without changes in end-systolic diameter (DL-s). Ivabradine (300 μM) abolished contraction and increased DL-d (−14%, n = 10, P < 0.01) or caused an incomplete inhibition of FL ( n = 3, P < 0.01), leaving DL-d and DL-s unaltered. ZD-7288 (200 μM) completely ( n = 12, P < 0.01) abolished FL, while DL-d decreased to 90.9 ± 2.7% of control. HCN gene expression and immunostaining confirmed the presence of HCN1-4 channel isoforms, likely arranged in different configurations, in LMCs. Hence, all together, data suggest that HCN channels might play an important role in affecting contraction frequency of LMCs.


2013 ◽  
Vol 110 (8) ◽  
pp. 1733-1743 ◽  
Author(s):  
Asher J. Albertson ◽  
Sidney B. Williams ◽  
John J. Hablitz

Hyperpolarization-activated, cyclic nucleotide-gated, nonspecific cation (HCN) channels have a well-characterized role in regulation of cellular excitability and network activity. The role of these channels in control of epileptiform discharges is less thoroughly understood. This is especially pertinent given the altered HCN channel expression in epilepsy. We hypothesized that inhibition of HCN channels would enhance bicuculline-induced epileptiform discharges. Whole cell recordings were obtained from layer (L)2/3 and L5 pyramidal neurons and L1 and L5 GABAergic interneurons. In the presence of bicuculline (10 μM), HCN channel inhibition with ZD 7288 (20 μM) significantly increased the magnitude (defined as area) of evoked epileptiform events in both L2/3 and L5 neurons. We recorded activity associated with epileptiform discharges in L1 and L5 interneurons to test the hypothesis that HCN channels regulate excitatory synaptic inputs differently in interneurons versus pyramidal neurons. HCN channel inhibition increased the magnitude of epileptiform events in both L1 and L5 interneurons. The increased magnitude of epileptiform events in both pyramidal cells and interneurons was due to an increase in network activity, since holding cells at depolarized potentials under voltage-clamp conditions to minimize HCN channel opening did not prevent enhancement in the presence of ZD 7288. In neurons recorded with ZD 7288-containing pipettes, bath application of the noninactivating inward cationic current ( Ih) antagonist still produced increases in epileptiform responses. These results show that epileptiform discharges in disinhibited rat neocortex are modulated by HCN channels.


2011 ◽  
Vol 115 (4) ◽  
pp. 836-843 ◽  
Author(s):  
Chad M. Brummett ◽  
Elizabeth K. Hong ◽  
Allison M. Janda ◽  
Francesco S. Amodeo ◽  
Ralph Lydic

Background The current study was designed to test the hypothesis that the increased duration of analgesia caused by adding dexmedetomidine to local anesthetic results from blockade of the hyperpolarization-activated cation (I(h)) current. Methods In this randomized, blinded, controlled study, the analgesic effects of peripheral nerve blocks using 0.5% ropivacaine alone or 0.5% ropivacaine plus dexmedetomidine (34 μM or 6 μg/kg) were assessed with or without the pretreatment of α(1)- and α(2)-adrenoceptor antagonists (prazosin and idazoxan, respectively) and antagonists and agonists of the I(h) current (ZD 7288 and forskolin, respectively). Sciatic nerve blocks were performed, and analgesia was measured by paw withdrawal latency to a thermal stimulus every 30 min for 300 min postblock. Results The analgesic effect of dexmedetomidine added to ropivacaine was not reversed by either prazosin or idazoxan. There were no additive or attenuated effects from the pretreatment with ZD 7288 (I(h) current blocker) compared with dexmedetomidine added to ropivacaine. When forskolin was administered as a pretreatment to ropivacaine plus dexmedetomidine, there were statistically significant reductions in duration of analgesia at time points 90-180 min (P &lt; 0.0001 for each individual comparison). The duration of blockade for the forskolin (768 μM) followed by ropivacaine plus dexmedetomidine group mirrored the pattern of the ropivacaine alone group, thereby implying a reversal effect. Conclusion Dexmedetomidine added to ropivacaine caused approximately a 75% increase in the duration of analgesia, which was reversed by pretreatment with an I(h) current enhancer. The analgesic effect of dexmedetomidine was not reversed by an α(2)-adrenoceptor antagonist.


2010 ◽  
Vol 299 (3) ◽  
pp. H634-H642 ◽  
Author(s):  
Boyoung Joung ◽  
Tetsuji Shinohara ◽  
Hong Zhang ◽  
Daehyeok Kim ◽  
Eue-Keun Choi ◽  
...  

The mechanisms of sinoatrial node (SAN) dysfunction in patients with chronically elevated sympathetic tone and reduced pacemaker current ( If; such as heart failure) are poorly understood. We simultaneously mapped membrane potential and intracellular Ca2+ in the Langendorff-perfused canine right atrium (RA). Blockade of either If (ZD-7288) or sarcoplasmic reticulum Ca2+ release (ryanodine) alone decreased heart rate by 8% ( n = 3) and 16% ( n = 3), respectively. Combined treatment of ZD-7288 and ryanodine consistently resulted in prolonged (≥3 s) sinus pauses (PSPs) ( n = 4). However, the middle SAN remained as the leading pacemaking site after these treatments. Prolonged exposure with isoproterenol (0.01 μmol/l) followed by ZD-7288 completely suppressed SAN but triggered recurrent ectopic atrial tachycardia. Cessation of tachycardia was followed by PSPs in five of eight RAs. Isoproterenol initially increased heart rate by 75% from baseline with late diastolic intracellular Ca2+ elevation (LDCAE) from the superior SAN. However, after a prolonged isoproterenol infusion, LDCAE disappeared in the superior SAN, the leading pacemaker shifted to the inferior SAN, and the rate reduced to 52% above baseline. Caffeine (2 ml, 20 mmol/l) injection after a prolonged isoproterenol infusion produced LDCAE in the SAN and accelerated the SAN rate, ruling out sarcoplasmic reticulum Ca2+ depletion as a cause of Ca2+ clock malfunction. We conclude that in an isolated canine RA preparation, chronically elevated sympathetic tone results in abnormal pacemaking hierarchy in the RA, including suppression of the superior SAN and enhanced pacemaking from ectopic sites. Combined malfunction of both membrane and Ca2+ clocks underlies the mechanisms of PSPs.


2008 ◽  
Vol 100 (2) ◽  
pp. 576-586 ◽  
Author(s):  
Michele Dibattista ◽  
Andrea Mazzatenta ◽  
Francesca Grassi ◽  
Roberto Tirindelli ◽  
Anna Menini

Hyperpolarization-activated currents ( Ih) are present in several neurons of the central and peripheral nervous system. However, Ih in neurons of the vomeronasal organ (VNO) is not well characterized. We studied the properties of Ih in sensory neurons from acute slices of mouse VNO. In voltage-clamp studies, Ih was identified by the characteristic kinetics of activation, voltage dependence, and blockage by Cs+ or ZD-7288, two blockers of the Ih. Forskolin, an activator of adenylyl cyclase, shifted the activation curve for Ih to less negative potentials. A comparison of Ih properties in VNO neurons with those of heterologously expressed hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, together with RT-PCR experiments in VNO, indicate that Ih is caused by HCN2 and/or HCN4 subunits. In current-clamp recordings, blocking Ih with ZD-7288 induced a hyperpolarization of 5.1 mV, an increase in input resistance, a decrease in the sensitivity to elicit action potentials in response to small current injections, and did not modify the frequency of action potentials elicited by a large current injection. It has been shown that in VNO neurons some pheromones induce a decrease in cAMP concentration, but the physiological role of cAMP is unknown. After application of blockers of adenylyl cyclase, we measured a hyperpolarization of 5.1 mV in 11 of 14 neurons, suggesting that basal levels of cAMP could modulate the resting potential. In conclusion, these results show that mouse VNO neurons express HCN2 and/or HCN4 subunits and that Ih contributes to setting the resting membrane potential and to increase excitability at stimulus threshold.


2008 ◽  
Vol 439 (3) ◽  
pp. 275-280 ◽  
Author(s):  
J.L. Sánchez-Alonso ◽  
J.V. Halliwell ◽  
A. Colino

2004 ◽  
Vol 101 (2) ◽  
pp. 488-494 ◽  
Author(s):  
Jeffrey S. Kroin ◽  
Asokumar Buvanendran ◽  
Daniel R. Beck ◽  
Julie E. Topic ◽  
Daniel E. Watts ◽  
...  

Background Although clonidine is commonly combined with local anesthetics to extend duration of peripheral nerve block, the mechanism by which clonidine potentiates local anesthetic action in vivo is unclear. Methods Male Sprague-Dawley rats received percutaneous injections of 1% lidocaine with/without clonidine or epinephrine into the sciatic notch and duration of sensory blockade was quantified by inhibition of pinprick foot withdrawal. The antagonists prazosin or yohimbine were injected before lidocaine with clonidine or epinephrine to determine the role of alpha-adrenergic receptors. The role of the hyperpolarization-activated cation current (Ih) was evaluated by injecting the current blocker ZD 7288 as well as the current enhancers forskolin and 8-Br-cAMP before lidocaine alone or with 15 micrograms/ml clonidine. Results Mean duration of sensory block for lidocaine alone was 69 +/- 2 min. Sensory block duration increased monotonically with increasing doses of added clonidine or epinephrine. Preinjection of prazosin but not yohimbine prevented the increase in block duration seen with epinephrine. Neither alpha-adrenergic antagonist attenuated the extended duration of block with clonidine. ZD 7288 extended sensory blockade equivalent to the prolongation observed with clonidine. There was no additive effect when ZD 7288 and clonidine were combined, and a decreased duration of nerve block when either forskolin or 8-Br-cAMP preceded injection of lidocaine with clonidine. Conclusions The findings indicate that prolongation of duration of in vivo lidocaine nerve blockade by clonidine is not mediated by an alpha-adrenergic mechanism but likely involves the Ih current.


2003 ◽  
Vol 90 (2) ◽  
pp. 843-850 ◽  
Author(s):  
De-Lai Qiu ◽  
Chun-Ping Chu ◽  
Tetsuro Shirasaka ◽  
Takashi Nabekura ◽  
Takato Kunitake ◽  
...  

The effect of neuromedin U (NMU) on rat paraventricular nucleus (PVN) neurons was examined using whole cell patch-clamp recordings. Under current-clamp, 31% of PVN parvocellular neurons ( n = 243) were depolarized by 100 nM NMU, but magnocellular neurons were not affected. NMU (10 nM to 1 μM) resulted in increased basal firing rate and depolarization in a dose-dependent manner with an EC50 of 70 nM. NMU-induced depolarization was unaffected by co-perfusion with 0.5 μM TTX + 10 μM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) + 10 μM bicuculline. Extracellular application of 70 μM ZD 7288 completely inhibited NMU-induced depolarization. Under voltage-clamp, 1 μM NMU produced negligible inward current but did increase the hyperpolarization-activated current ( IH) at step potentials less than –80 mV. The effects of NMU on IH were voltage-dependent, and NMU shifted the IH conductance-voltage relationship ( V1/2) by about 10.8 mV and enhanced IH kinetics without changing the slope constant ( k). Extracellular application of 70 μM ZD 7288 or 3 mM Cs+ blocked IH and the effects of NMU in voltage-clamp. These results suggest that NMU selectively depolarizes the subpopulation of PVN parvocellular neurons via enhancement of the hyperpolarization-activated inward current.


Sign in / Sign up

Export Citation Format

Share Document