Stochastic characterization of space-time precipitation: Implications for remote sensing

1994 ◽  
Vol 17 (1-2) ◽  
pp. 47-59 ◽  
Author(s):  
Juan B. Valdés ◽  
Eunho Ha ◽  
Chulsang Yoo ◽  
Gerald R. North
2021 ◽  
Vol 13 (8) ◽  
pp. 4105
Author(s):  
Yupei Jiang ◽  
Honghu Sun

Leisure walking has been an important topic in space-time behavior and public health research. However, prior studies pay little attention to the integration and the characterization of diverse and multilevel demands of leisure walking. This study constructs a theoretical framework of leisure walking behavior demands from three different dimensions and levels of activity participation, space-time opportunity, and health benefit. On this basis, through a face-to-face survey in Nanjing, China (N = 1168, 2017–2018 data), this study quantitatively analyzes the characteristics of leisure walking demands, as well as the impact of the built environment and individual factors on it. The results show that residents have a high demand for participation and health benefits of leisure walking. The residential neighborhood provides more space opportunities for leisure walking, but there is a certain constraint on the choice of walking time. Residential neighborhood with medium or large parks is more likely to satisfy residents’ demands for engaging in leisure walking and obtaining high health benefits, while neighborhood with a high density of walking paths tends to limit the satisfaction of demands for space opportunity and health benefit. For residents aged 36 and above, married, or retired, their diverse demands for leisure walking are more likely to be fulfilled, while those with high education, medium-high individual income, general and above health status, or children (<18 years) are less likely to be fulfilled. These finding that can have important implications for the healthy neighborhood by fully considering diverse and multilevel demands of leisure walking behavior.


2021 ◽  
Vol 10 (6) ◽  
pp. 384
Author(s):  
Javier Martínez-López ◽  
Bastian Bertzky ◽  
Simon Willcock ◽  
Marine Robuchon ◽  
María Almagro ◽  
...  

Protected areas (PAs) are a key strategy to reverse global biodiversity declines, but they are under increasing pressure from anthropogenic activities and concomitant effects. Thus, the heterogeneous landscapes within PAs, containing a number of different habitats and ecosystem types, are in various degrees of disturbance. Characterizing habitats and ecosystems within the global protected area network requires large-scale monitoring over long time scales. This study reviews methods for the biophysical characterization of terrestrial PAs at a global scale by means of remote sensing (RS) and provides further recommendations. To this end, we first discuss the importance of taking into account the structural and functional attributes, as well as integrating a broad spectrum of variables, to account for the different ecosystem and habitat types within PAs, considering examples at local and regional scales. We then discuss potential variables, challenges and limitations of existing global environmental stratifications, as well as the biophysical characterization of PAs, and finally offer some recommendations. Computational and interoperability issues are also discussed, as well as the potential of cloud-based platforms linked to earth observations to support large-scale characterization of PAs. Using RS to characterize PAs globally is a crucial approach to help ensure sustainable development, but it requires further work before such studies are able to inform large-scale conservation actions. This study proposes 14 recommendations in order to improve existing initiatives to biophysically characterize PAs at a global scale.


Sign in / Sign up

Export Citation Format

Share Document