Determination of ventilation rates in occupied buildings from metabolic CO2 concentrations and production rates

1988 ◽  
Vol 23 (2) ◽  
pp. 95-102 ◽  
Author(s):  
P.N. Smith
2001 ◽  
Vol 56 (3) ◽  
pp. 366-382 ◽  
Author(s):  
Terry W. Swanson ◽  
Marc L. Caffee

AbstractThe 36Cl dating method is increasingly being used to determine the surface-exposure history of Quaternary landforms. Production rates for the 36Cl isotopic system, a critical component of the dating method, have now been refined using the well-constrained radiocarbon-based deglaciation history of Whidbey and Fidalgo Islands, Washington. The calculated total production rates due to calcium and potassium are 91±5 atoms 36Cl (g Ca)−1 yr−1 and are 228±18 atoms 36Cl (g K)−1 yr−1, respectively. The calculated ground-level secondary neutron production rate in air, Pf(0), inferred from thermal neutron absorption by 35Cl is 762±28 neutrons (g air)−1 yr−1 for samples with low water content (1–2 wt.%). Neutron absorption by serpentinized harzburgite samples of the same exposure age, having higher water content (8–12 wt.%), is ∼40% greater relative to that for dry samples. These data suggest that existing models do not adequately describe thermalization and capture of neutrons for hydrous rock samples. Calculated 36Cl ages of samples collected from the surfaces of a well-dated dacite flow (10,600–12,800 cal yr B.P.) and three disparate deglaciated localities are consistent with close limiting calibrated 14C ages, thereby supporting the validity of our 36Cl production rates integrated over the last ∼15,500 cal yr between latitudes of 46.5° and 51°N. Although our production rates are internally consistent and yield reasonable exposure ages for other localities, there nevertheless are significant differences between these production rates and those of other investigators.


2017 ◽  
Author(s):  
Chun-Ying Liu ◽  
Wei-Hua Feng ◽  
Ye Tian ◽  
Gui-Peng Yang ◽  
Pei-Feng Li ◽  
...  

Abstract. We developed a new method for the determination of dissolved nitric oxide (NO) in discrete seawater samples based on a combination of a purge-and-trap set-up and fluorometric detection of NO. 2,3-diaminonaphthalene (DAN) reacts with NO in seawater to form the highly fluorescent 2,3-naphthotriazole (NAT). The fluorescence intensity was linear for NO concentrations in the range from 0.14 nmol L−1 to 19 nmol L−1. We determined a detection limit of 0.068 nmol L−1, an average recovery coefficient of 83.8 % (80.2–90.0 %), and a relative standard deviation of ±7.2 %. With our method we determined for the first time the temporal and spatial distributions of NO surface concentrations in coastal waters of the Yellow Sea off Qingdao and in Jiaozhou Bay during a cruise in November 2009. The concentrations of NO varied from below the detection limit to 0.50 nmol L−1 with an average of 0.26 ± 0.14 nmol L−1. NO surface concentrations were generally enhanced significantly during daytime implying that NO formation processes such as NO2− photolysis are much higher during daytime than chemical NO consumption which, in turn, lead to a significant decrease of NO concentrations during nighttime. In general, NO surface concentrations and measured NO production rates were higher compared to previously reported measurements. This might be caused by the high NO2− surface concentrations encountered during the cruise. Moreover, additional measurements of NO production rates implied that the occurrence of particles and a temperature increase can enhance NO production rates. With the method introduced here we have a reliable and comparably easy to use method at hand to measure oceanic NO surface concentrations which can be used to decipher both its temporal and spatial distributions as well as its biogeochemical pathways in the oceans.


2018 ◽  
Vol 619 ◽  
pp. A127 ◽  
Author(s):  
N. Biver ◽  
D. Bockelée-Morvan ◽  
G. Paubert ◽  
R. Moreno ◽  
J. Crovisier ◽  
...  

We present a multi-wavelength study of comet C/2016 R2 (PanSTARRS). This comet was observed on 23 and 24 January 2018 with the IRAM 30 m telescope, and in January to March 2018 with the Nançay radio telescope. Visible spectroscopy was performed in December 2017 and February 2018 with small amateur telescopes. We report on measurements of CO, CH3OH, H2CO and HCN production rates, and on the determination of the N2/CO abundance ratio. Several other species, especially OH, were searched for but not detected. The inferred relative abundances, including upper limits for sulfur species, are compared to those measured in other comets at about the same heliocentric distance of ~2.8 AU. The coma composition of comet C/2016 R2 is very different from all other comets observed so far, being rich in N2 and CO and dust poor. This suggests that this comet might belong to a very rare group of comets formed beyond the N2 ice line. Alternatively, comet C/2016 R2 (PanSTARRS) could be the fragment of a large and differentiated transneptunian object, with properties characteristic of volatile-enriched layers.


Sign in / Sign up

Export Citation Format

Share Document