An advanced TiFe series hydrogen storage material with high hydrogen capacity and easily activated properties

1990 ◽  
Vol 15 (4) ◽  
pp. 259-262 ◽  
Author(s):  
S LANYIN ◽  
L FANGJIE ◽  
B DEYOU
2012 ◽  
Vol 1441 ◽  
Author(s):  
Jianjiang Hu ◽  
Raiker Witter ◽  
Shuhua Ren ◽  
Maximilian Fichtner

ABSTRACTCerium in various chemical forms was introduced into NaAlH4 to study the hydrogen sorption properties of the resulted material. Although all the Ce precursors tested in this work resulted in a reversible hydrogen storage material, an immediate enhancement in the desorption kinetics could be achieved by a heating treatment, resulting in the in situ formation of cerium aluminide (CeAl4) in the material. While the use of CeAl4 instead of CeCl3 can increase the hydrogen capacity by bypassing the formation of the ineffective NaCl, the highest capacity of 4.9 wt% was obtained from NaAlH4 doped directly with commercial metallic cerium, which may provide a much simplified process for a possible up-scaling preparation of this hydrogen storage material.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gökhan Gizer ◽  
Julián Puszkiel ◽  
Maria Victoria Castro Riglos ◽  
Claudio Pistidda ◽  
José Martín Ramallo-López ◽  
...  

AbstractThe system Mg(NH2)2 + 2LiH is considered as an interesting solid-state hydrogen storage material owing to its low thermodynamic stability of ca. 40 kJ/mol H2 and high gravimetric hydrogen capacity of 5.6 wt.%. However, high kinetic barriers lead to slow absorption/desorption rates even at relatively high temperatures (>180 °C). In this work, we investigate the effects of the addition of K-modified LixTiyOz on the absorption/desorption behaviour of the Mg(NH2)2 + 2LiH system. In comparison with the pristine Mg(NH2)2 + 2LiH, the system containing a tiny amount of nanostructured K-modified LixTiyOz shows enhanced absorption/desorption behaviour. The doped material presents a sensibly reduced (∼30 °C) desorption onset temperature, notably shorter hydrogen absorption/desorption times and reversible hydrogen capacity of about 3 wt.% H2 upon cycling. Studies on the absorption/desorption processes and micro/nanostructural characterizations of the Mg(NH2)2 + 2LiH + K-modified LixTiyOz system hint to the fact that the presence of in situ formed nanostructure K2TiO3 is the main responsible for the observed improved kinetic behaviour.


2011 ◽  
Vol 197-198 ◽  
pp. 749-752 ◽  
Author(s):  
Jing Liu ◽  
Qian Li ◽  
Kuo Chih Chou

The Mg2NiH4 hydrogen storage material was successfully prepared by controlled hydriding combustion synthesis (CHCS) from Mg and Ni powders in a high magnetic field. The effects of magnetic intensity on the structure, phase compositions and the hydriding/dehydriding (A/D) properties of the composite are investigated. As a result, a high magnetic field promotes the formation of Mg2NiH4. The PCT results show that the maximal hydrogen capacity at 573 K is 3.59 wt.%. The comparison of the hydrogen A/D results under the different conditions suggested that 4 T is the optimal magnetic intensity in our trial.


2021 ◽  
Vol 765 ◽  
pp. 138277
Author(s):  
Pingping Liu ◽  
Yafei Zhang ◽  
Xiangjun Xu ◽  
Fangming Liu ◽  
Jibiao Li

2012 ◽  
Vol 512-515 ◽  
pp. 1438-1441 ◽  
Author(s):  
Hong Min Kan ◽  
Ning Zhang ◽  
Xiao Yang Wang ◽  
Hong Sun

An overview of recent advances in hydrogen storage is presented in this review. The main focus is on metal hydrides, liquid-phase hydrogen storage material, alkaline earth metal NC/polymer composites and lithium borohydride ammoniate. Boron-nitrogen-based liquid-phase hydrogen storage material is a liquid under ambient conditions, air- and moisture-stable, recyclable and releases H2controllably and cleanly. It is not a solid material. It is easy storage and transport. The development of a liquid-phase hydrogen storage material has the potential to take advantage of the existing liquid-based distribution infrastructure. An air-stable composite material that consists of metallic Mg nanocrystals (NCs) in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen and rapid kinetics (loading in <30 min at 200°C). Moreover, nanostructuring of Mg provides rapid storage kinetics without using expensive heavy-metal catalysts. The Co-catalyzed lithium borohydride ammoniate, Li(NH3)4/3BH4 releases 17.8 wt% of hydrogen in the temperature range of 135 to 250 °C in a closed vessel. This is the maximum amount of dehydrogenation in all reports. These will reduce economy cost of the global transition from fossil fuels to hydrogen energy.


Sign in / Sign up

Export Citation Format

Share Document