Controllability and observability of polynomial dynamical systems

1981 ◽  
Vol 5 (5) ◽  
pp. 543-552 ◽  
Author(s):  
John Baillieul
2021 ◽  
Vol 1 (1) ◽  
pp. 88-94
Author(s):  
Daniel Gerbet ◽  
Klaus Röbenack

Controllability and observability are important system properties in control theory. These properties cannot be easily checked for general nonlinear systems. This paper addresses the local and global observability as well as the decomposition with respect to observability of polynomial dynamical systems embedded in a higher-dimensional state-space. These criteria are applied on some example system.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 646
Author(s):  
Dániel Leitold ◽  
Ágnes Vathy-Fogarassy ◽  
János Abonyi

The network science-based determination of driver nodes and sensor placement has become increasingly popular in the field of dynamical systems over the last decade. In this paper, the applicability of the methodology in the field of life sciences is introduced through the analysis of the neural network of Caenorhabditis elegans. Simultaneously, an Octave and MATLAB-compatible NOCAD toolbox is proposed that provides a set of methods to automatically generate the relevant structural controllability and observability associated measures for linear or linearised systems and compare the different sensor placement methods.


2013 ◽  
Vol 1 ◽  
Author(s):  
MATTHEW BAKER ◽  
LAURA DE MARCO

AbstractWe study the postcritically finite maps within the moduli space of complex polynomial dynamical systems. We characterize rational curves in the moduli space containing an infinite number of postcritically finite maps, in terms of critical orbit relations, in two settings: (1) rational curves that are polynomially parameterized; and (2) cubic polynomials defined by a given fixed point multiplier. We offer a conjecture on the general form of algebraic subvarieties in the moduli space of rational maps on ${ \mathbb{P} }^{1} $ containing a Zariski-dense subset of postcritically finite maps.


2020 ◽  
pp. 81-85
Author(s):  
M. Isabel Garcıa-Planas

The networked multi-agent systems that they are interconnected via communication channels have great applicability in multiple areas, such as power grids, bioinformatics, sensor networks, vehicles, robotics and neuroscience, for example. Consequently, they have been widely studied by scientists in different fields in particular in the field of control theory. Recently an interest has grown to analyze the control properties as consensus controllability and observability of multi-agent dynamical systems motivated by the fact that the architecture of communication network in engineering multi-agent systems is usually adjustable. In this paper, we analyze how to improve the control properties in the case of multiagent linear time-invariant dynamical systems.


Sign in / Sign up

Export Citation Format

Share Document