scholarly journals The neutrino masses in SO(10) grand unified theory

1987 ◽  
Vol 188 (4) ◽  
pp. 455-461 ◽  
Author(s):  
G.K. Leontaris ◽  
J.D. Vergados
2017 ◽  
Vol 2017 (12) ◽  
Author(s):  
Francisco J. de Anda ◽  
Stephen F. King ◽  
Elena Perdomo

Abstract We propose a Grand Unified Theory of Flavour, based on SO(10) together with a non-Abelian discrete group S 4, under which the unified three quark and lepton 16-plets are unified into a single triplet 3′. The model involves a further discrete group ℤ 4 R  × ℤ 4 3 which controls the Higgs and flavon symmetry breaking sectors. The CSD2 flavon vacuum alignment is discussed, along with the GUT breaking potential and the doublet-triplet splitting, and proton decay is shown to be under control. The Yukawa matrices are derived in detail, from renormalisable diagrams, and neutrino masses emerge from the type I seesaw mechanism. A full numerical fit is performed with 15 input parameters generating 19 presently constrained observables, taking into account supersymmetry threshold corrections. The model predicts a normal neutrino mass ordering with a CP oscillation phase of 260°, an atmospheric angle in the first octant and neutrinoless double beta decay with m ββ = 11 meV. We discuss N 2 leptogenesis, which fixes the second right-handed neutrino mass to be M 2 ≃ 2 × 1011 GeV, in the natural range predicted by the model.


Author(s):  
Olakanmi F. Akinto ◽  
Farida Tahir

Using the fact that neutrinos only participate in weak and gravitational interactions, we explore the possibility of having their masses emerged at the intersection between extended electroweak theory and theory of gravity. We describe how these two seemingly incompatible theories could be embedded in a lepton-number violating 5-dimensional Lagrangian [Formula: see text]. A peculiar feature of this approach is its ability to generate effective Majorana neutrino masses via the spontaneous symmetry breaking (SSB) of Grand Unified Theory (GUT), [Formula: see text] and 4[Formula: see text] symmetric matrix of gravitational couplings. Within the purview of this theoretical framework, we obtain values for the effective Majorana mass [Formula: see text][Formula: see text]meV, and the Majorana neutrino masses [Formula: see text][Formula: see text]meV, [Formula: see text][Formula: see text]meV, [Formula: see text][Formula: see text]meV, [Formula: see text][Formula: see text]meV and [Formula: see text][Formula: see text]eV. Our results are in good agreement with both experimental and cosmological data.


2003 ◽  
Vol 18 (22) ◽  
pp. 4015-4026 ◽  
Author(s):  
PAUL LANGACKER

Alternatives to the traditional grand unified theory seesaw for neutrino masses are briefly described. These include the possibility of large extra dimensions and various possibilities for models involving an extra U(1)′ gauge symmetry. The difficulty of observing Majorana phases in neutrinoless double beta decay is also briefly commented on.


2021 ◽  
Vol 51 (1) ◽  
pp. 22-30
Author(s):  
Daniel P. McCarthy

Christ’s bones are missing at the Holy Sepulchre; St Peter’s bones remain in his basilica; Hagia Sophia was not built on bones. The absence, presence, or lack of bones effects different emphases on memory (anamnesis) and fulfillment (eschatology). In Jerusalem we witness our future glory (eschatology) already revealed in our history (anamnesis); in Rome we recall (anamnesis) the sacrifice of martyrs whose bones remain until the general resurrection (eschatology), even while we venerate the saints in light; at Hagia Sophia liturgy itself, rather than bones, provides the context for remembering the whole Christ in the power of the Spirit. Celebrating liturgy over the bones of martyrs in Rome, while venerating their sacrifice, may have accentuated the sacrificial character of the eucharistic liturgy in the Christian west, whereas in the Christian east the eschatological glory already revealed in our history and in liturgy may have shaped the eschatological character of liturgy.


2016 ◽  
Vol 127 (1) ◽  
pp. 98-99 ◽  
Author(s):  
Joseph Polex-Wolf ◽  
Giles S.H. Yeo ◽  
Stephen O’Rahilly

Sign in / Sign up

Export Citation Format

Share Document