SU(2) lattice gauge-Higgs theory with dynamical I = 1 fermions and the role of Fermion representation in chiral phase structure

1989 ◽  
Vol 219 (2-3) ◽  
pp. 335-341 ◽  
Author(s):  
Sinya Aoki ◽  
I-Hsiu Lee ◽  
Robert E. Shrock
2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Sayantan Sharma

AbstractDifferent aspects of the phase diagram of strongly interacting matter described by quantum chromodynamics (QCD), which have emerged from the recent studies using lattice gauge theory techniques, are discussed. A special emphasis is given on understanding the role of the anomalous axial U(1) symmetry in determining the order of the finite temperature chiral phase transition in QCD with two massless quark flavors and tracing its origin to the topological properties of the QCD vacuum.


2020 ◽  
pp. 130-135
Author(s):  
D.N. Korotaev ◽  
K.N. Poleshchenko ◽  
E.N. Eremin ◽  
E.E. Tarasov

The wear resistance and wear characteristics of cluster-gradient architecture (CGA) nanostructured topocomposites are studied. The specifics of tribocontact interaction under microcutting conditions is considered. The reasons for retention of high wear resistance of this class of nanostructured topocomposites are studied. The mechanisms of energy dissipation from the tribocontact zone, due to the nanogeometry and the structural-phase structure of CGA topocomposites are analyzed. The role of triboactivated deformation and diffusion processes in providing increased wear resistance of carbide-based topocomposites is shown. They are tested under the conditions of blade processing of heat-resistant titanium alloy.


2013 ◽  
Vol 870 (1) ◽  
pp. 159-175 ◽  
Author(s):  
O. Borisenko ◽  
V. Chelnokov ◽  
G. Cortese ◽  
M. Gravina ◽  
A. Papa ◽  
...  

1992 ◽  
Vol 07 (18) ◽  
pp. 1601-1607 ◽  
Author(s):  
M. BAIG ◽  
A. TRIAS

We present the first numerical results from a lattice formulation of the Abelian surface gauge model which accounts for three-index fields required in theories based on an antisymmetrical potential. For this purpose we have defined a lattice gauge model in such a way that field variables are assigned to the plaquettes and the interaction is defined through elementary three-dimensional cubes. The phase structure of the Abelian Z(2) case has been determined using Monte-Carlo techniques. Duality relations to spin and gauge models are also studied.


Sign in / Sign up

Export Citation Format

Share Document