The exchange algebra for Liouville theory on a punctured Riemann sphere

1992 ◽  
Vol 279 (3-4) ◽  
pp. 285-290 ◽  
Author(s):  
Jian-min Shen ◽  
Zheng-mao Sheng
Author(s):  
Sylvain Ribault

We provide a brief but self-contained review of conformal field theory on the Riemann sphere. We first introduce general axioms such as local conformal invariance, and derive Ward identities and BPZ equations. We then define minimal models and Liouville theory by specific axioms on their spectrums and degenerate fields. We solve these theories by computing three- and four-point functions, and discuss their existence and uniqueness.


1992 ◽  
Vol 291 (1-2) ◽  
pp. 53-62 ◽  
Author(s):  
Jian-Min Shen ◽  
Zheng-Mao Sheng ◽  
Zhong-Hua Wang

1997 ◽  
Vol 391 (1-2) ◽  
pp. 78-86 ◽  
Author(s):  
Takanori Fujiwara ◽  
Hiroshi Igarashi ◽  
Yoshio Takimoto

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Thomas Creutzig ◽  
Yasuaki Hikida

Abstract We examine strong/weak dualities in two dimensional conformal field theories by generalizing the Fateev-Zamolodchikov-Zamolodchikov (FZZ-)duality between Witten’s cigar model described by the $$ \mathfrak{sl}(2)/\mathfrak{u}(1) $$ sl 2 / u 1 coset and sine-Liouville theory. In a previous work, a proof of the FZZ-duality was provided by applying the reduction method from $$ \mathfrak{sl}(2) $$ sl 2 Wess-Zumino-Novikov-Witten model to Liouville field theory and the self-duality of Liouville field theory. In this paper, we work with the coset model of the type $$ \mathfrak{sl}\left(N+1\right)/\left(\mathfrak{sl}(N)\times \mathfrak{u}(1)\right) $$ sl N + 1 / sl N × u 1 and investigate the equivalence to a theory with an $$ \mathfrak{sl}\left(N+\left.1\right|N\right) $$ sl N + 1 N structure. We derive the duality explicitly for N = 2, 3 by applying recent works on the reduction method extended for $$ \mathfrak{sl}(N) $$ sl N and the self-duality of Toda field theory. Our results can be regarded as a conformal field theoretic derivation of the duality of the Gaiotto-Rapčák corner vertex operator algebras Y0,N,N+1[ψ] and YN,0,N+1[ψ−1].


2021 ◽  
Vol 24 (3) ◽  
Author(s):  
Alexander I. Bobenko ◽  
Ulrike Bücking

AbstractWe consider the class of compact Riemann surfaces which are ramified coverings of the Riemann sphere $\hat {\mathbb {C}}$ ℂ ̂ . Based on a triangulation of this covering we define discrete (multivalued) harmonic and holomorphic functions. We prove that the corresponding discrete period matrices converge to their continuous counterparts. In order to achieve an error estimate, which is linear in the maximal edge length of the triangles, we suitably adapt the triangulations in a neighborhood of every branch point. Finally, we also prove a convergence result for discrete holomorphic integrals for our adapted triangulations of the ramified covering.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yifei He ◽  
Jesper Lykke Jacobsen ◽  
Hubert Saleur

Abstract Based on the spectrum identified in our earlier work [1], we numerically solve the bootstrap to determine four-point correlation functions of the geometrical connectivities in the Q-state Potts model. Crucial in our approach is the existence of “interchiral conformal blocks”, which arise from the degeneracy of fields with conformal weight hr,1, with r ∈ ℕ*, and are related to the underlying presence of the “interchiral algebra” introduced in [2]. We also find evidence for the existence of “renormalized” recursions, replacing those that follow from the degeneracy of the field $$ {\Phi}_{12}^D $$ Φ 12 D in Liouville theory, and obtain the first few such recursions in closed form. This hints at the possibility of the full analytical determination of correlation functions in this model.


Sign in / Sign up

Export Citation Format

Share Document