Dispersion relation approach to the extrapolation towards negative energy of the optical potential in 40Ca and 208Pb

1986 ◽  
Vol 460 (3) ◽  
pp. 466-500 ◽  
Author(s):  
C. Mahaux ◽  
R. Sartor
1969 ◽  
Vol 128 (2) ◽  
pp. 673-695 ◽  
Author(s):  
H. Fiedeldey ◽  
C.A. Engelbrecht

1978 ◽  
Vol 18 (2) ◽  
pp. 642-659 ◽  
Author(s):  
J. M. Greben ◽  
Yu. A. Simonov

1988 ◽  
Vol 37 (3) ◽  
pp. 998-1003 ◽  
Author(s):  
B. T. Kim ◽  
H. C. Kim ◽  
K. E. Park

2007 ◽  
Vol 22 (02n03) ◽  
pp. 641-644 ◽  
Author(s):  
B. El-BENNICH ◽  
O. M. A. LEITNER ◽  
B. LOISEAU ◽  
J. P. DEDONDER

Within the dispersion relation approach we give the double spectral representation for space-like and time-like B → f0(980) and D → f0(980) transition form factors in the whole q2 range. The spectral densities, being the input of the dispersion relations, are obtained from a triangle diagram of relativistic constituent quarks.


2016 ◽  
Vol 31 (10) ◽  
pp. 1650058 ◽  
Author(s):  
Peng Guo

From dispersion relation approach, a formalism that describes final state interaction among three particles in a coupled-channel system is presented. Different representations of coupled-channel three-body formalism for spinless particles in both initial and final states are derived.


1992 ◽  
Vol 56 (1) ◽  
pp. 123-127 ◽  
Author(s):  
C. Adam ◽  
R. A. Bertlmann ◽  
P. Hofer

Sign in / Sign up

Export Citation Format

Share Document