Sum rules for the current correlation functions of a two-dimensional classical electron liquid

1981 ◽  
Vol 84 (4) ◽  
pp. 213-215 ◽  
Author(s):  
G.K. Agarwal ◽  
J.S. Thakur ◽  
K.N. Pathak
2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yifei He ◽  
Jesper Lykke Jacobsen ◽  
Hubert Saleur

Abstract Based on the spectrum identified in our earlier work [1], we numerically solve the bootstrap to determine four-point correlation functions of the geometrical connectivities in the Q-state Potts model. Crucial in our approach is the existence of “interchiral conformal blocks”, which arise from the degeneracy of fields with conformal weight hr,1, with r ∈ ℕ*, and are related to the underlying presence of the “interchiral algebra” introduced in [2]. We also find evidence for the existence of “renormalized” recursions, replacing those that follow from the degeneracy of the field $$ {\Phi}_{12}^D $$ Φ 12 D in Liouville theory, and obtain the first few such recursions in closed form. This hints at the possibility of the full analytical determination of correlation functions in this model.


1998 ◽  
Vol 09 (05) ◽  
pp. 685-691
Author(s):  
B. Kawecka-Magiera ◽  
A. Z. Maksymowicz ◽  
M. Kowal ◽  
K. Kulakowski

Spin–spin correlation functions <S(0)S(R)> as dependent on interatomic distance R are studied in the random-site two-dimensional Ising S=1/2 ±J system. Oscillations of the correlation functions are found, which is not a case in the random-bond system.


2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Sylvain Ribault

We investigate exactly solvable two-dimensional conformal field theories that exist at generic values of the central charge, and that interpolate between A-series or D-series minimal models. When the central charge becomes rational, correlation functions of these CFTs may tend to correlation functions of minimal models, or diverge, or have finite limits which can be logarithmic. These results are based on analytic relations between four-point structure constants and residues of conformal blocks.


Sign in / Sign up

Export Citation Format

Share Document