The time scale of Monte Carlo experiments

1983 ◽  
Vol 97 (4) ◽  
pp. 147-149 ◽  
Author(s):  
Ulf Larsen
2013 ◽  
Vol 141 (2) ◽  
pp. 822-831 ◽  
Author(s):  
Timothy DelSole ◽  
Xia Feng

Abstract This paper reexamines a procedure proposed by Shukla and Gutzler for estimating potential seasonal predictability. Certain subtle and unverified assumptions required for the method to work are clarified, and Monte Carlo experiments are used to demonstrate that these assumptions are adequate even for autocorrelated processes in typical applications, provided the effective time scale T0 of the stochastic process is known. This paper highlights the fact that the time scale T0 is difficult to estimate reliably (as noted in other papers) and can be biased by an order of magnitude. This bias can seriously compromise the reliability of the Shukla–Gutzler method.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 817
Author(s):  
Fernando López ◽  
Mariano Matilla-García ◽  
Jesús Mur ◽  
Manuel Ruiz Marín

A novel general method for constructing nonparametric hypotheses tests based on the field of symbolic analysis is introduced in this paper. Several existing tests based on symbolic entropy that have been used for testing central hypotheses in several branches of science (particularly in economics and statistics) are particular cases of this general approach. This family of symbolic tests uses few assumptions, which increases the general applicability of any symbolic-based test. Additionally, as a theoretical application of this method, we construct and put forward four new statistics to test for the null hypothesis of spatiotemporal independence. There are very few tests in the specialized literature in this regard. The new tests were evaluated with the mean of several Monte Carlo experiments. The results highlight the outstanding performance of the proposed test.


2021 ◽  
Author(s):  
Faezeh Ghasemnezhad ◽  
Ommolbanin Bazrafshan ◽  
Mehdi Fazeli ◽  
Mohammad Parvinnia ◽  
Vijay Singh

Abstract Standardized Runoff Index (SRI), as one of the well-known hydrological drought indices, may contain uncertainties caused by the employment of the distribution function, time scale, and record length of statistical data. In this study, the uncertainty in the SRI estimation of monthly discharge data of 30 and 49 year length from Minab dam watershed, south of Iran, was investigated. Four probability distribution functions (Gamma, Weibull, Lognormal, and Normal) were used to fit the cumulative discharge data at 3, 6. 9, 12, 24 and 48 month time scales, with their goodness-of-fit and normality evaluated by K-S and normality tests, respectively. Using Monte-Carlo sampling, 50,000 statistical data were generated for each event and each time scale, followed by 95% confidence interval. The width of the confidence interval was used as uncertainty and sources of uncertainty were investigated using miscellaneous factors. It was found that the maximum uncertainty was related to normal and lognormal distributions and the minimum uncertainty to gamma and Weibull distributions. Further, the increase in both time scale and record length led to the decrease in uncertainty.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jorge Martínez Compains ◽  
Ignacio Rodríguez Carreño ◽  
Ramazan Gençay ◽  
Tommaso Trani ◽  
Daniel Ramos Vilardell

Abstract Johansen’s Cointegration Test (JCT) performs remarkably well in finding stable bivariate cointegration relationships. Nonetheless, the JCT is not necessarily designed to detect such relationships in presence of non-linear patterns such as structural breaks or cycles that fall in the low frequency portion of the spectrum. Seasonal adjustment procedures might not detect such non-linear patterns, and thus, we expose the difficulty in identifying cointegrating relations under the traditional use of JCT. Within several Monte Carlo experiments, we show that wavelets can empower more the JCT framework than the traditional seasonal adjustment methodologies, allowing for identification of hidden cointegrating relationships. Moreover, we confirm these results using seasonally adjusted time series as US consumption and income, gross national product (GNP) and money supply M1 and GNP and M2.


Sign in / Sign up

Export Citation Format

Share Document