Geometric phase for cyclic motions and the quantum state space metric

1990 ◽  
Vol 147 (1) ◽  
pp. 3-8 ◽  
Author(s):  
J. Anandan
2011 ◽  
Author(s):  
Christopher A. Fuchs ◽  
Timothy Ralph ◽  
Ping Koy Lam
Keyword(s):  

Author(s):  
Thomas Villmann ◽  
Alexander Engelsberger ◽  
Jensun Ravichandran ◽  
Andrea Villmann ◽  
Marika Kaden

AbstractPrototype-based models like the Generalized Learning Vector Quantization (GLVQ) belong to the class of interpretable classifiers. Moreover, quantum-inspired methods get more and more into focus in machine learning due to its potential efficient computing. Further, its interesting mathematical perspectives offer new ideas for alternative learning scenarios. This paper proposes a quantum computing-inspired variant of the prototype-based GLVQ for classification learning. We start considering kernelized GLVQ with real- and complex-valued kernels and their respective feature mapping. Thereafter, we explain how quantum space ideas could be integrated into a GLVQ using quantum bit vector space in the quantum state space $${\mathcal {H}}^{n}$$ H n and show the relations to kernelized GLVQ. In particular, we explain the related feature mapping of data into the quantum state space $${\mathcal {H}}^{n}$$ H n . A key feature for this approach is that $${\mathcal {H}}^{n}$$ H n is an Hilbert space with particular inner product properties, which finally restrict the prototype adaptations to be unitary transformations. The resulting approach is denoted as Qu-GLVQ. We provide the mathematical framework and give exemplary numerical results.


2015 ◽  
Vol 13 (06) ◽  
pp. 1550039 ◽  
Author(s):  
A. Plastino ◽  
G. Bellomo ◽  
A. R. Plastino

We argue that the dimensionality of the space of quantum systems’ states should be considered as a legitimate resource for quantum information tasks. The assertion is supported by the fact that quantum states with discord-like capacities can be obtained from classically-correlated states in spaces of dimension large enough. We illustrate things with some simple examples that justify our claim.


2020 ◽  
Vol 135 (10) ◽  
Author(s):  
Akio Fujiwara

AbstractThe notion of dually flatness is of central importance in information geometry. Nevertheless, little is known about dually flat structures on quantum statistical manifolds except that the Bogoliubov metric admits a global dually flat structure on a quantum state space $${{\mathcal {S}}}({{\mathbb {C}}}^d)$$ S ( C d ) for any $$d\ge 2$$ d ≥ 2 . In this paper, we show that every monotone metric on a two-level quantum state space $${{\mathcal {S}}}({{\mathbb {C}}}^2)$$ S ( C 2 ) admits a local dually flat structure.


2016 ◽  
Vol 16 (5&6) ◽  
pp. 483-497
Author(s):  
Brittany Corn ◽  
Jun Jing ◽  
Ting Yu

The fully quantized model of double qubits coupled to a common bath is solved using the quantum state diffusion (QSD) approach in the non-Markovian regime. We have established the explicit time-local non-Markovian QSD equations for the two-qubit dissipative and dephasing models. Diffusive quantum trajectories are applied to the entanglement estimation of two-qubit systems in a non-Markovian regime. In both cases, non-Markovian features of entanglement evolution are revealed through quantum diffusive unravellings in the system state space.


Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 728 ◽  
Author(s):  
Xiangluo Wang ◽  
Chunlei Yang ◽  
Guo-Sen Xie ◽  
Zhonghua Liu

Aiming to implement image segmentation precisely and efficiently, we exploit new ways to encode images and achieve the optimal thresholding on quantum state space. Firstly, the state vector and density matrix are adopted for the representation of pixel intensities and their probability distribution, respectively. Then, the method based on global quantum entropy maximization (GQEM) is proposed, which has an equivalent object function to Otsu’s, but gives a more explicit physical interpretation of image thresholding in the language of quantum mechanics. To reduce the time consumption for searching for optimal thresholds, the method of quantum lossy-encoding-based entropy maximization (QLEEM) is presented, in which the eigenvalues of density matrices can give direct clues for thresholding, and then, the process of optimal searching can be avoided. Meanwhile, the QLEEM algorithm achieves two additional effects: (1) the upper bound of the thresholding level can be implicitly determined according to the eigenvalues; and (2) the proposed approaches ensure that the local information in images is retained as much as possible, and simultaneously, the inter-class separability is maximized in the segmented images. Both of them contribute to the structural characteristics of images, which the human visual system is highly adapted to extract. Experimental results show that the proposed methods are able to achieve a competitive quality of thresholding and the fastest computation speed compared with the state-of-the-art methods.


2007 ◽  
Vol 22 (07n10) ◽  
pp. 645-650
Author(s):  
HUA-ZHONG LI

The historical and geometrical origin of Gauge Transformation and Yang's phase loop of gauge theory are discussed. In the present talk, we present the following points: 1. Parallel transport of a vector; 2. Weyl 1918 gauge transformation 3. Concept of non-integrable phase factor; 4. Berry's quantum geometrical phase; 5. Parallel transport of quantum state vector produces the phase physics.


Sign in / Sign up

Export Citation Format

Share Document