Dielectric tensor expression for non-Maxwellian distribution functions and applications to α-particle damping in ICRH

1991 ◽  
Vol 157 (6-7) ◽  
pp. 399-405 ◽  
Author(s):  
R. Koch
2019 ◽  
Vol 26 (3) ◽  
pp. 032104 ◽  
Author(s):  
R. J. Henchen ◽  
M. Sherlock ◽  
W. Rozmus ◽  
J. Katz ◽  
P. E. Masson-Laborde ◽  
...  

2007 ◽  
Vol 73 (2) ◽  
pp. 207-214 ◽  
Author(s):  
R. P. SINGHAL ◽  
A. K. TRIPATHI

Abstract.The components of the dielectric tensor for the distribution function given by Leubner and Schupfer have been obtained. The effect of the loss-cone index appearing in the particle distribution function in a hot magnetized plasma has been studied. A case study has been performed to calculate temporal growth rates of Bernstein waves using the distribution function given by Summers and Thorne and Leubner and Schupfer. The effect of the loss-cone index on growth rates is found to be quite different for the two distribution functions.


2021 ◽  
Author(s):  
Shanxiu XIE ◽  
Yong CHEN ◽  
Junchen YE ◽  
Yugu CHEN ◽  
Na PENG ◽  
...  

Abstract Stimulated Raman scattering (SRS) is one of the main instabilities affecting the success of the fusion ignition. Here, we study the relationship between Raman growth and Landau damping with various distribution functions combining the analytic formulas and Vlasov simulations. The Landau damping obtained by Vlasov-Poisson simulation and Raman growth rate obtained by Vlasov-Maxwell simulation are anti-correlated, which is consistent with our theoretical analysis quantitatively. Maxwellian distribution, flattened distribution, and bi-Maxwellian distribution are studied in detail, which represent three typical stages of SRS. We have also demonstrated the effects of plateau width, hot-electron fraction, hot-to-cold electron temperature ratio, and collisional damping on the Landau damping and growth rate. It gives us a deep understanding of SRS and possible ways to mitigate SRS through manipulating distribution functions to a high Landau damping regime.


1990 ◽  
Vol 44 (2) ◽  
pp. 319-335 ◽  
Author(s):  
M. Bornatici ◽  
G. Chiozzi ◽  
P. de Chiara

Analytical expressions for the weakly relativistic dielectric tensor near the electron-cyclotron frequency and harmonies are obtained to any order in finite-Larmor-radius effects for a bi-Maxwellian distribution function. The dielectric tensor is written in ternis of generalized Shkarofsky dispersion functions, whose properties are well known. Relevant limiting cases are considered and, in particular, the anti-Hermitian part of the (fully relativistic) dielectric tensor is evaluated for two cases of strong temperature anisotropy.


Sign in / Sign up

Export Citation Format

Share Document