scholarly journals Landau Damping in Space Plasmas with Two Electron Temperature Non-Maxwellian Distribution Functions

2014 ◽  
Vol 516 ◽  
pp. 012013 ◽  
Author(s):  
M N S Qureshi ◽  
S Sehar ◽  
H A Shah
2021 ◽  
Author(s):  
Shanxiu XIE ◽  
Yong CHEN ◽  
Junchen YE ◽  
Yugu CHEN ◽  
Na PENG ◽  
...  

Abstract Stimulated Raman scattering (SRS) is one of the main instabilities affecting the success of the fusion ignition. Here, we study the relationship between Raman growth and Landau damping with various distribution functions combining the analytic formulas and Vlasov simulations. The Landau damping obtained by Vlasov-Poisson simulation and Raman growth rate obtained by Vlasov-Maxwell simulation are anti-correlated, which is consistent with our theoretical analysis quantitatively. Maxwellian distribution, flattened distribution, and bi-Maxwellian distribution are studied in detail, which represent three typical stages of SRS. We have also demonstrated the effects of plateau width, hot-electron fraction, hot-to-cold electron temperature ratio, and collisional damping on the Landau damping and growth rate. It gives us a deep understanding of SRS and possible ways to mitigate SRS through manipulating distribution functions to a high Landau damping regime.


AIP Advances ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 055227 ◽  
Author(s):  
M. Usman Malik ◽  
W. Masood ◽  
M. N. S. Qureshi ◽  
Arshad M. Mirza

2021 ◽  
Vol 87 (3) ◽  
Author(s):  
R.A. López ◽  
S.M. Shaaban ◽  
M. Lazar

Space plasmas are known to be out of (local) thermodynamic equilibrium, as observations show direct or indirect evidences of non-thermal velocity distributions of plasma particles. Prominent are the anisotropies relative to the magnetic field, anisotropic temperatures, field-aligned beams or drifting populations, but also, the suprathermal populations enhancing the high-energy tails of the observed distributions. Drifting bi-Kappa distribution functions can provide a good representation of these features and enable for a kinetic fundamental description of the dispersion and stability of these collision-poor plasmas, where particle–particle collisions are rare but wave–particle interactions appear to play a dominant role in the dynamics. In the present paper we derive the full set of components of the dispersion tensor for magnetized plasma populations modelled by drifting bi-Kappa distributions. A new solver called DIS-K (DIspersion Solver for Kappa plasmas) is proposed to solve numerically the dispersion relations of high complexity. The solver is validated by comparing with the damped and unstable wave solutions obtained with other codes, operating in the limits of drifting Maxwellian and non-drifting Kappa models. These new theoretical tools enable more realistic characterizations, both analytical and numerical, of wave fluctuations and instabilities in complex kinetic configurations measured in-situ in space plasmas.


2019 ◽  
Vol 26 (3) ◽  
pp. 032104 ◽  
Author(s):  
R. J. Henchen ◽  
M. Sherlock ◽  
W. Rozmus ◽  
J. Katz ◽  
P. E. Masson-Laborde ◽  
...  

2018 ◽  
Vol 84 (4) ◽  
Author(s):  
E. Tassi ◽  
D. Grasso ◽  
D. Borgogno ◽  
T. Passot ◽  
P. L. Sulem

An electromagnetic reduced gyrofluid model for collisionless plasmas, accounting for electron inertia, finite ion Larmor radius effects and Landau-fluid closures for the electron fluid is derived by means of an asymptotic expansion from a parent gyrofluid model. In the absence of terms accounting for Landau damping, the model is shown to possess a non-canonical Hamiltonian structure. The corresponding Casimir invariants are derived and use is made thereof, in order to obtain a set of normal field variables, in terms of which the Poisson bracket and the model equations take a remarkably simple form. The inclusion of perpendicular temperature fluctuations generalizes previous Hamiltonian reduced fluid models and, in particular, the presence of ion perpendicular gyrofluid temperature fluctuations reflects into the presence of two new Lagrangian invariants governing the ion dynamics. The model is applied, in the cold-ion limit, to investigate numerically a magnetic reconnection problem. The Landau damping terms are shown to reduce, by decreasing the electron temperature fluctuations, the linear reconnection rate and to delay the nonlinear island growth. The saturated island width, on the other hand, is independent of Landau damping. The fraction of magnetic energy converted into perpendicular kinetic energy also appears to be unaffected by the Landau damping terms, which, on the other hand, dissipate parallel kinetic energy as well as free energy due to density and electron temperature fluctuations.


2017 ◽  
Vol 35 (2) ◽  
pp. 239-252
Author(s):  
Arvind K. Tripathi ◽  
Rajendra P. Singhal ◽  
Onkar N. Singh II

Abstract. Diffuse auroral intensities of neutral atomic oxygen OI λ1356 Å emission on Ganymede due to whistler mode waves are estimated. Pitch angle diffusion of magnetospheric electrons into the loss cone due to resonant wave–particle interaction of whistler mode waves is considered, and the resulting electron precipitation flux is calculated. The analytical yield spectrum approach is used for determining the energy deposition of electrons precipitating into the atmosphere of Ganymede. It is found that the intensities (4–30 R) calculated from the precipitation of magnetospheric electrons observed near Ganymede are inadequate to account for the observational intensities (≤ 100 R). This is in agreement with the conclusions reached in previous works. Some acceleration mechanism is required to energize the magnetospheric electrons. In the present work we consider the heating and acceleration of magnetospheric electrons by electrostatic waves. Two particle distribution functions (Maxwellian and kappa distribution) are used to simulate heating and acceleration of electrons. Precipitation of a Maxwellian distribution of electrons can produce about 70 R intensities of OI λ1356 Å emission for electron temperature of 150 eV. A kappa distribution can also yield a diffuse auroral intensity of similar magnitude for a characteristic energy of about 100 eV. The maximum contribution to the estimated intensity results from the dissociative excitation of O2. Contributions from the direct excitation of atomic oxygen and cascading in atomic oxygen are estimated to be only about 1 and 2 % of the total calculated intensity, respectively. The findings of this work are relevant for the present JUNO and future JUICE missions to Jupiter. These missions will provide new data on electron densities, electron temperature and whistler mode wave amplitudes in the magnetosphere of Jupiter near Ganymede.


Sign in / Sign up

Export Citation Format

Share Document