bernstein waves
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 16)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Xingyu Guo ◽  
Ryo Ashida ◽  
Yuto Noguchi ◽  
Ryusuke Kajita ◽  
Hitoshi Tanaka ◽  
...  

Abstract By using a newly developed five-pin probe antenna and two-dimensional mechanical probe driving system, the 2-D wave pattern of phase and amplitude has been directly measured in Low Aspect ratio Torus Experiment (LATE), for an overdense ECR plasma with microwave obliquely injected. In the case of O-mode injection, an EBW-like wave pattern has been detected for the first time, in a localized region near the upper hybrid resonance layer. The pattern has a short wavelength of about 2 mm and is also electrostatic and backward. In the case of X-mode injection, the 2-D wave pattern is quite different and no EBW signal can be observed. By adjusting the toroidal magnetic field in O-mode injection, it is found that both the position and size of the EBW region have changed, which suggest the localized condition of efficient O-X-B conversion and high collisional damping rate of EBWs in these experiments.


Laser Physics ◽  
2021 ◽  
Vol 31 (10) ◽  
pp. 106001
Author(s):  
Arvind Kumar ◽  
Asheel Kumar ◽  
Ashish Varma

2021 ◽  
Vol 918 (1) ◽  
pp. 26
Author(s):  
Jiuqi Ma ◽  
Xinliang Gao ◽  
Zhongwei Yang ◽  
Bruce T. Tsurutani ◽  
Mingzhe Liu ◽  
...  

2021 ◽  
Author(s):  
Ahmad Lalti ◽  
Yuri Khotyaintsev ◽  
Daniel Graham ◽  
Andris Vaivad ◽  
Andreas Johlander

<p>Energy dissipation at collisionless shocks is still an open question. Wave particle interactions are believed to be at the heart of it, but the exact details are still to be figured out. One type of waves that is known to be an efficient dissipator of solar wind kinetic energy are electrostatic waves in the shock ramp, such as ion acoustic waves with frequency around the ion plasma frequency or Bernstein waves with frequency around the electron cyclotron frequency and its harmonics. The electric field of such waves is typically larger than 100 mV/m, large enough to disturb particle dynamics. In this study we use the magnetospheric multiscale (MMS) spacecraft, to investigate the source and evolution of electrostatic waves in the shock ramp of quasi-perpendicular super-critical shocks, and study their effect on solar wind thermalization.</p>


2020 ◽  
Author(s):  
Wenya Li ◽  
Daniel Graham ◽  
Binbin Tang ◽  
Andris Vaivads ◽  
Mats Andre ◽  
...  

<p>The Magnetospheric Multiscale spacecraft encounter an electron diffusion region (EDR) of asymmetric magnetic reconnection at Earth's magnetopause. The EDR is characterized by agyrotropic electron velocity distributions on both sides of the neutral line. Various types of plasma waves are produced by the magnetic reconnection in and near the EDR. Here we report large-amplitude electron Bernstein waves (EBWs) at the electron-scale boundary of the Hall current reversal. The finite gyroradius effect of the outflow electrons generates the crescent-shaped agyrotropic electron distributions, which drive the EBWs. The EBWs propagate toward the central EDR. The amplitude of the EBWs is sufficiently large to thermalize and diffuse electrons around the EDR. Our analysis shows that the EBWs contribute to the cross-field diffusion of the electron-scale boundary of the Hall current reversal near the EDR.</p>


2020 ◽  
Author(s):  
Kyunghwan Dokgo ◽  
Kyoung-Joo Hwang ◽  
James L. Burch ◽  
Peter H. Yoon ◽  
Daniel B. Graham ◽  
...  

<p>The recently launched NASA’s Magnetosphere Multiscale (MMS) mission enables investigations of multi-scale phenomena in the reconnection process. Especially, the MMS spacecraft revealed that high-frequency waves of electron time scales exist near the electron diffusion region (EDR) due to complex electron distributions. As such waves are generated near the EDR, they could significantly affect the environment of the EDR via wave-particle interactions.</p><p> We investigated the September 19, 2015 event when the MMS spacecraft crossed the reconnection exhaust region. The MMS spacecraft observed a parallel electron crescent, which is known to be generated by the cyclotron turning due to the normal magnetic field in the reconnection exhaust region. At the same time, highly discrete waves were observed in the power spectrum of the electric field. The wave frequency ranged between 6  ~ 14 Fce (Fce: electron cyclotron frequency), and the power of perpendicular components was larger than the parallel component. Therefore, they featured electron Bernstein waves. By modeling the parallel electron crescent as a sum of 18 ring-shaped electron distributions, we calculate the linear dispersion relation using a numerical solver. The linear growth rates agreed with the power spectrum of the electric field, which means that the parallel electron crescent locally drove the electron Bernstein waves. Together with previous studies of high-frequency waves, our work could provide a diagram of high-frequency wave distributions in the reconnection geometry.</p>


2020 ◽  
Vol 60 (3) ◽  
pp. 036025 ◽  
Author(s):  
F. Romanelli ◽  
A. Cardinali

Sign in / Sign up

Export Citation Format

Share Document