The glutamate dehydrogenase-encoding gene of the hyperthermophilic archaeon Pyrococcus furiosus: sequence, transcription and analysis of the deduced amino acid sequence

Gene ◽  
1993 ◽  
Vol 132 (1) ◽  
pp. 143-148 ◽  
Author(s):  
Rik I.L. Eggen ◽  
Ans C.M. Geerling ◽  
Kerstin Waldkötter ◽  
Garabed Antranikian ◽  
Willem M. de Vos
2001 ◽  
Vol 183 (11) ◽  
pp. 3428-3435 ◽  
Author(s):  
Thomas Hansen ◽  
Margitta Oehlmann ◽  
Peter Schönheit

ABSTRACT Glucose-6-phosphate isomerase (phosphoglucose isomerase [PGI]) (EC 5.3.1.9 ) from the hyperthermophilic archaeon Pyrococcus furiosus was purified 500-fold to homogeneity. The enzyme had an apparent molecular mass of 43 kDa and was composed of a single type of subunit of 23 kDa indicating a homodimeric (α2) structure. Kinetic constants of the enzyme were determined at the optimal pH 7 and at 80°C. Rate dependence on both substrates followed Michaelis-Menten kinetics. The apparent Km values for glucose-6-phosphate and fructose-6-phosphate were 8.7 and 1.0 mM, respectively, and the corresponding apparentV max values were 800 and 130 U/mg. The enzyme had a temperature optimum of 96°C and showed a significant thermostability up to 100°C, which is in accordance with its physiological function under hyperthermophilic conditions. Based on the N-terminal amino acid sequence of the subunit, a single open reading frame (ORF; Pf_209264) was identified in the genome of P. furiosus. The ORF was characterized by functional overexpression in Escherichia coli as a gene, pgi, encoding glucose-6-phosphate isomerase. The recombinant PGI was purified and showed molecular and kinetic properties almost identical to those of the native PGI purified from P. furiosus. The deduced amino acid sequence of P. furiosus PGI did not reveal significant similarity to the conserved PGI superfamily of eubacteria and eucarya. This is the first description of an archaeal PGI, which represents a novel type of PGI.


1998 ◽  
Vol 180 (18) ◽  
pp. 4781-4789 ◽  
Author(s):  
Mousumi Ghosh ◽  
Amy M. Grunden ◽  
Dianne M. Dunn ◽  
Robert Weiss ◽  
Michael W. W. Adams

ABSTRACT Proline dipeptidase (prolidase) was purified from cell extracts of the proteolytic, hyperthermophilic archaeon Pyrococcus furiosus by multistep chromatography. The enzyme is a homodimer (39.4 kDa per subunit) and as purified contains one cobalt atom per subunit. Its catalytic activity also required the addition of Co2+ ions (Kd , 0.24 mM), indicating that the enzyme has a second metal ion binding site. Co2+could be replaced by Mn2+ (resulting in a 25% decrease in activity) but not by Mg2+, Ca2+, Fe2+, Zn2+, Cu2+, or Ni2+. The prolidase exhibited a narrow substrate specificity and hydrolyzed only dipeptides with proline at the C terminus and a nonpolar amino acid (Met, Leu, Val, Phe, or Ala) at the N terminus. Optimal prolidase activity with Met-Pro as the substrate occurred at a pH of 7.0 and a temperature of 100°C. The N-terminal amino acid sequence of the purified prolidase was used to identify in the P. furiosus genome database a putative prolidase-encoding gene with a product corresponding to 349 amino acids. This gene was expressed in Escherichia coli and the recombinant protein was purified. Its properties, including molecular mass, metal ion dependence, pH and temperature optima, substrate specificity, and thermostability, were indistinguishable from those of the native prolidase from P. furiosus. Furthermore, theKm values for the substrate Met-Pro were comparable for the native and recombinant forms, although the recombinant enzyme exhibited a twofold greaterV max value than the native protein. The amino acid sequence of P. furiosus prolidase has significant similarity with those of prolidases from mesophilic organisms, but the enzyme differs from them in its substrate specificity, thermostability, metal dependency, and response to inhibitors. The P. furiosus enzyme appears to be the second Co-containing member (after methionine aminopeptidase) of the binuclear N-terminal exopeptidase family.


2002 ◽  
Vol 184 (12) ◽  
pp. 3305-3312 ◽  
Author(s):  
Taku Amo ◽  
Haruyuki Atomi ◽  
Tadayuki Imanaka

ABSTRACT We had previously isolated a facultatively anaerobic hyperthermophilic archaeon, Pyrobaculum calidifontis strain VA1. Here, we found that strain VA1, when grown under aerobic conditions, harbors high catalase activity. The catalase was purified 91-fold from crude extracts and displayed a specific activity of 23,500 U/mg at 70°C. The enzyme exhibited a Km value of 170 mM toward H2O2 and a k cat value of 2.9 × 104 s−1·subunit−1 at 25°C. Gel filtration chromatography indicated that the enzyme was a homotetramer with a subunit molecular mass of 33,450 Da. The purified catalase did not display the Soret band, which is an absorption band particular to heme enzymes. In contrast to typical heme catalases, the catalase was not strongly inhibited by sodium azide. Furthermore, with plasma emission spectroscopy, we found that the catalase did not contain iron but instead contained manganese. Our biochemical results indicated that the purified catalase was not a heme catalase but a manganese (nonheme) catalase, the first example in archaea. Intracellular catalase activity decreased when cells were grown anaerobically, while under aerobic conditions, an increase in activity was observed with the removal of thiosulfate from the medium, or addition of manganese. Based on the N-terminal amino acid sequence of the purified protein, we cloned and sequenced the catalase gene (katPc ). The deduced amino acid sequence showed similarity with that of the manganese catalase from a thermophilic bacterium, Thermus sp. YS 8-13. Interestingly, in the complete archaeal genome sequences, no open reading frame has been assigned as a manganese catalase gene. Moreover, a homology search with the sequence of katPc revealed that no orthologue genes were present on the archaeal genomes, including those from the “aerobic” (hyper)thermophilic archaea Aeropyrum pernix, Sulfolobus solfataricus, and Sulfolobus tokodaii. Therefore, Kat Pc can be considered a rare example of a manganese catalase from archaea.


2001 ◽  
Vol 183 (2) ◽  
pp. 490-499 ◽  
Author(s):  
Chung-Dar Lu ◽  
Ahmed T. Abdelal

ABSTRACT The NAD+-dependent glutamate dehydrogenase (NAD-GDH) from Pseudomonas aeruginosa PAO1 was purified, and its amino-terminal amino acid sequence was determined. This sequence information was used in identifying and cloning the encodinggdhB gene and its flanking regions. The molecular mass predicted from the derived sequence for the encoded NAD-GDH was 182.6 kDa, in close agreement with that determined from sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme (180 kDa). Cross-linking studies established that the native NAD-GDH is a tetramer of equal subunits. Comparison of the derived amino acid sequence of NAD-GDH from P. aeruginosa with the GenBank database showed the highest homology with hypothetical polypeptides from Pseudomonas putida, Mycobacterium tuberculosis, Rickettsia prowazakii, Legionella pneumophila, Vibrio cholerae, Shewanella putrefaciens, Sinorhizobium meliloti, andCaulobacter crescentus. A moderate degree of homology, primarily in the central domain, was observed with the smaller tetrameric NAD-GDH (protomeric mass of 110 kDa) fromSaccharomyces cerevisiae or Neurospora crassa. Comparison with the yet smaller hexameric GDH (protomeric mass of 48 to 55 kDa) of other prokaryotes yielded a low degree of homology that was limited to residues important for binding of substrates and for catalytic function. NAD-GDH was induced 27-fold by exogenous arginine and only 3-fold by exogenous glutamate. Primer extension experiments established that transcription of gdhB is initiated from an arginine-inducible promoter and that this induction is dependent on the arginine regulatory protein, ArgR, a member of the AraC/XyIS family of regulatory proteins. NAD-GDH was purified to homogeneity from a recombinant strain of P. aeruginosa and characterized. The glutamate saturation curve was sigmoid, indicating positive cooperativity in the binding of glutamate. NAD-GDH activity was subject to allosteric control by arginine and citrate, which function as positive and negative effectors, respectively. Both effectors act by influencing the affinity of the enzyme for glutamate. NAD-GDH from this organism differs from previously characterized enzymes with respect to structure, protomer mass, and allosteric properties indicate that this enzyme represents a novel class of microbial glutamate dehydrogenases.


1974 ◽  
Vol 71 (11) ◽  
pp. 4361-4365 ◽  
Author(s):  
J. C. Wootton ◽  
G. K. Chambers ◽  
A. A. Holder ◽  
A. J. Baron ◽  
J. G. Taylor ◽  
...  

1975 ◽  
Vol 149 (3) ◽  
pp. 739-748 ◽  
Author(s):  
J C Wootton ◽  
J G Taylor ◽  
A A Jackson ◽  
G K Chambers ◽  
J R S. Fincham

The NADP-specific glutamate dehydrogenase of Neurospora crassa was digested with trypsin, and peptides accounting for 441 out of the 452 residues of the polypeptide chain were isolated and substantially sequenced. Additional experimental detail has been deposited as Supplementary Publication SUP 50052 (11 pages) with the British Library (Lending Division), Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, U.K., from whom copies may be obtained under the terms given in Biochem J. (1975) 145, 5.


Sign in / Sign up

Export Citation Format

Share Document