genome database
Recently Published Documents


TOTAL DOCUMENTS

691
(FIVE YEARS 246)

H-INDEX

70
(FIVE YEARS 7)

Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 41
Author(s):  
Yuhan Zhou ◽  
Yushan Qiao ◽  
Zhiyou Ni ◽  
Jianke Du ◽  
Jinsong Xiong ◽  
...  

Strawberry species (Fragaria spp.) are known as the “queen of fruits” and are cultivated around the world. Over the past few years, eight strawberry genome sequences have been released. The reuse of these large amount of genomic data, and the more large-scale comparative analyses are very challenging to both plant biologists and strawberry breeders. To promote the reuse and exploration of strawberry genomic data and enable extensive analyses using various bioinformatics tools, we have developed the Genome Database for Strawberry (GDS). This platform integrates the genome collection, storage, integration, analysis, and dissemination of large amounts of data for researchers engaged in the study of strawberry. We collected and formatted the eight published strawberry genomes. We constructed the GDS based on Linux, Apache, PHP and MySQL. Different bioinformatic software were integrated. The GDS contains data from eight strawberry species, as well as multiple tools such as BLAST, JBrowse, synteny analysis, and gene search. It has a designed interface and user-friendly tools that perform a variety of query tasks with a few simple operations. In the future, we hope that the GDS will serve as a community resource for the study of strawberries.


Genetics ◽  
2021 ◽  
Author(s):  
Stacia R Engel ◽  
Edith D Wong ◽  
Robert S Nash ◽  
Suzi Aleksander ◽  
Micheal Alexander ◽  
...  

Abstract Saccharomyces cerevisiae is used to provide fundamental understanding of eukaryotic genetics, gene product function, and cellular biological processes. Saccharomyces Genome Database (SGD) has been supporting the yeast research community since 1993, serving as its de facto hub. Over the years, SGD has maintained the genetic nomenclature, chromosome maps, and functional annotation, and developed various tools and methods for analysis and curation of a variety of emerging data types. More recently, SGD and six other model organism focused knowledgebases have come together to create the Alliance of Genome Resources to develop sustainable genome information resources that promote and support the use of various model organisms to understand the genetic and genomic bases of human biology and disease. Here we describe recent activities at SGD, including the latest reference genome annotation update, the development of a curation system for mutant alleles, and new pages addressing homology across model organisms as well as the use of yeast to study human disease.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1970
Author(s):  
Shunya Sasaki ◽  
Maaya Nishiko ◽  
Takuma Sakamoto ◽  
Michael R. Kanost ◽  
Hiroko Tabunoki

The DJ-1 gene is highly conserved across a wide variety of organisms and it plays a role in anti-oxidative stress mechanisms in cells. The red flour beetle, Tribolium castaneum, is widely used as a model insect species because it is easy to evaluate gene function in this species using RNA interference (RNAi). The T. castaneum DJ-1 (TcDJ-1) sequence is annotated in the T. castaneum genome database; however, the function and characteristics of the TcDJ-1 gene have not been elucidated. Here, we investigated the cDNA sequence of TcDJ-1 and partially characterized its function. First, we examined the TcDJ-1 amino acid sequence and found that it was highly conserved with sequences from other species. TcDJ-1 mRNA expression was higher in the early pupal and adult developmental stages. We evaluated oxidant tolerance in TcDJ-1 knockdown adults using paraquat and found that adults with TcDJ-1 knockdown exhibited increased sensitivity to paraquat. Our findings show that TcDJ-1 has an antioxidant function, as observed for DJ-1 from other insects. Therefore, these results suggest that TcDJ-1 protects against oxidative stress during metamorphosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jianfeng Liu ◽  
Heng Wei ◽  
Xingzheng Zhang ◽  
Hongli He ◽  
Yunqing Cheng ◽  
...  

Corylus heterophylla (2n = 22) is the most widely distributed, unique, and economically important nut species in China. Chromosome-level genomes of C. avellana, C. heterophylla, and C. mandshurica have been published in 2021, but a satisfactory hazelnut genome database is absent. Northeast China is the main distribution and cultivation area of C. heterophylla, and the mechanism underlying the adaptation of C. heterophylla to extremely low temperature in this area remains unclear. Using single-molecule real-time sequencing and the chromosomal conformational capture (Hi-C) assisted genome assembly strategy, we obtained a high-quality chromosome-scale genome sequence of C. heterophylla, with a total length of 343 Mb and scaffold N50 of 32.88 Mb. A total of 94.72% of the test genes from the assembled genome could be aligned to the Embryophyta_odb9 database. In total, 22,319 protein-coding genes were predicted, and 21,056 (94.34%) were annotated in the assembled genome. A HazelOmics online database (HOD) containing the assembled genome, gene-coding sequences, protein sequences, and various types of annotation information was constructed. This database has a user-friendly and straightforward interface. In total, 439 contracted genes and 3,810 expanded genes were identified through genome evolution analysis, and 17 expanded genes were significantly enriched in the unsaturated fatty acid biosynthesis pathway (ko01040). Transcriptome analysis results showed that FAD (Cor0058010.1), SAD (Cor0141290.1), and KAT (Cor0122500.1) with high expression abundance were upregulated at the ovule maturity stage. We deduced that the expansion of these genes may promote high unsaturated fatty acid content in the kernels and improve the adaptability of C. heterophylla to the cold climate of Northeast China. The reference genome and database will be beneficial for future molecular breeding and gene function studies in this nut species, as well as for evolutionary research on species of the order Fagales.


Author(s):  
Yuxin Guo ◽  
Ying Ju ◽  
Dong Chen ◽  
Lihong Wang

Genes, the nucleotide sequences that encode a polypeptide chain or functional RNA, are the basic genetic unit controlling biological traits. They are the guarantee of the basic structures and functions in organisms, and they store information related to biological factors and processes such as blood type, gestation, growth, and apoptosis. The environment and genetics jointly affect important physiological processes such as reproduction, cell division, and protein synthesis. Genes are related to a wide range of phenomena including growth, decline, illness, aging, and death. During the evolution of organisms, there is a class of genes that exist in a conserved form in multiple species. These genes are often located on the dominant strand of DNA and tend to have higher expression levels. The protein encoded by it usually either performs very important functions or is responsible for maintaining and repairing these essential functions. Such genes are called persistent genes. Among them, the irreplaceable part of the body’s life activities is the essential gene. For example, when starch is the only source of energy, the genes related to starch digestion are essential genes. Without them, the organism will die because it cannot obtain enough energy to maintain basic functions. The function of the proteins encoded by these genes is thought to be fundamental to life. Nowadays, DNA can be extracted from blood, saliva, or tissue cells for genetic testing, and detailed genetic information can be obtained using the most advanced scientific instruments and technologies. The information gained from genetic testing is useful to assess the potential risks of disease, and to help determine the prognosis and development of diseases. Such information is also useful for developing personalized medication and providing targeted health guidance to improve the quality of life. Therefore, it is of great theoretical and practical significance to identify important and essential genes. In this paper, the research status of essential genes and the essential genome database of bacteria are reviewed, the computational prediction method of essential genes based on communication coding theory is expounded, and the significance and practical application value of essential genes are discussed.


2021 ◽  
Author(s):  
Mohd. Asim Khan ◽  
Sheetal Uppal ◽  
Suman Kundu

Cyanobacteria are oxygenic photosynthetic prokaryotes, practically present in every plausible environment on the earth. In 1996, the first cyanobacterial genome was sequenced from Synechocystis sp. PCC 6803 and the cyanobacterial genome database has been continuously growing with genomes from more than 300 cyanobacterial and other related species, so far. Synechocystis sp. PCC 6803 is one of the best-characterized cyanobacteria and has developed into a model cyanobacterium that scientists are using throughout the world. At the same time, the field of hemoglobin was undergoing a breakthrough with the identification of new globins in all three kingdoms of life including cyanobacteria. Since then, the newly identified globins in the cyanobacteria are raising intriguing questions about their structure and physiological functions, which are quite different from vertebrate’s hemoglobin and myoglobin. These hemoglobins have displayed unprecedented stability, unique heme coordination, novel conformational changes, and other properties that are not often observed in the globin superfamily. This chapter provides an overview of the unique globin from Synechocystis sp. PCC 6803, its interacting protein partners, proposed functions, and its biotechnological implications including potential in the field of artificial oxygen carriers.


2021 ◽  
Vol 7 (6) ◽  
pp. e639
Author(s):  
Chul-Hoo Kang ◽  
Young Mee Kim ◽  
Yang-Ji Kim ◽  
Su-Jeong Hong ◽  
Do Yoon Kim ◽  
...  

ObjectiveThis study aimed to determine the frequency of pathogenic NOTCH3 variants among Koreans.MethodsIn this cross-sectional study, we queried for pathogenic NOTCH3 variants in 2 Korean public genome databases: the Korean Reference Genome Database (KRGDB) and the Korean Genome Project (Korea1K). In addition, we screened the 3 most common pathogenic NOTCH3 variants (p.Arg75Pro, p.Arg544Cys, and p.Arg578Cys) for 1,000 individuals on Jeju Island, where the largest number of patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) have been reported in Korea.ResultsThe pathogenic NOTCH3 variant (p.Arg544Cys) was found in 0.12% of sequences in the KRGDB, and 3 pathogenic variants (p.Arg75Pro, p.Arg182Cys, and p.Arg544Cys) were present in 0.44% of the Korea1K database. Of the 1,000 individuals on Jeju Island, we found 2 cysteine-altering NOTCH3 variants (p.Arg544Cys variant in 9 and p.Arg578Cys in 1 individual) in 1.00% of the participants (95% confidence interval: 0.48%–1.83%). The presence of cysteine-altering NOTCH3 variants was significantly associated with a history of stroke (p < 0.001).DiscussionPathogenic NOTCH3 variants are frequently found in the general Korean population. Such a high prevalence of pathogenic variants could threaten the brain health of tens of thousands to hundreds of thousands of older adults in Korea.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jinjin Ding ◽  
Hassan Karim ◽  
Yulong Li ◽  
Wendy Harwood ◽  
Carlos Guzmán ◽  
...  

The APETALA2/Ethylene-Responsive factor (AP2/ERF) gene family is a large plant-specific transcription factor family, which plays important roles in regulating plant growth and development. A role in starch synthesis is among the multiple functions of this family of transcription factors. Barley (Hordeum vulgare L.) is one of the most important cereals for starch production. However, there are limited data on the contribution of AP2 transcription factors in barley. In this study, we used the recently published barley genome database (Morex) to identify 185 genes of the HvAP2/ERF family. Compared with previous work, we identified 64 new genes in the HvAP2/ERF gene family and corrected some previously misannotated and duplicated genes. After phylogenetic analysis, HvAP2/ERF genes were classified into four subfamilies and 18 subgroups. Expression profiling showed different patterns of spatial and temporal expression for HvAP2/ERF genes. Most of the 12 HvAP2/ERF genes analyzed using quantitative reverse transcription–polymerase chain reaction had similar expression patterns when compared with those of starch synthase genes in barley, except for HvAP2-18 and HvERF-73. HvAP2-18 is homologous to OsRSR1, which negatively regulates the synthesis of rice starch. Luciferase reporter gene, and yeast one-hybrid assays showed that HvAP2-18 bound the promoter of AGP-S and SBE1 in vitro. Thus, HvAP2-18 might be an interesting candidate gene to further explore the mechanisms involved in the regulation of starch synthesis in barley.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Marta Nisita Dewanggana ◽  
Diana Elizabeth Waturangi ◽  
Yogiara

Abstract Objective The aims of this research were to determine the genomic properties of BI-EHEC to control Enterohemorrhagic Escherichia coli (EHEC), which was isolated from previous study. Genomic analysis of this phage is essential for the assessment of this bacteriophage for further application as food preservatives. Results Genome of BI-EHEC was successfully annotated using multiPhATE2. Structural and lytic cycle-related proteins such as head, tail, capsid, and lysozyme (lysin) were annotated. The phylogenetic tree of tail fiber protein and BRIG results showed that BI-EHEC was similar to phages of the same host in the bacteriophage genome database. There were no indications of virulence properties, antibiotic resistance genes and lysogenic protein among annotated genes which implied BI-EHEC followed a lytic life cycle. PHACTS analysis was done to confirm this notion further and yielded a lytic cycle result. Further analysis using CARD found that BI-EHEC does not contain residual ARGs per recommended parameter. Furthermore, BI-EHEC confirmed as lytic bacteriophage, making it a good candidate for biocontrol agent.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yohei Ishibashi ◽  
Hatsumi Goda ◽  
Rie Hamaguchi ◽  
Keishi Sakaguchi ◽  
Takayoshi Sekiguchi ◽  
...  

AbstractThe demand for n-3 long-chain polyunsaturated fatty acids (n-3LC-PUFAs), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), will exceed their supply in the near future, and a sustainable source of n-3LC-PUFAs is needed. Thraustochytrids are marine protists characterized by anaerobic biosynthesis of DHA via polyunsaturated fatty acid synthase (PUFA-S). Analysis of a homemade draft genome database suggested that Parietichytrium sp. lacks PUFA-S but possesses all fatty acid elongase (ELO) and desaturase (DES) genes required for DHA synthesis. The reverse genetic approach and a tracing experiment using stable isotope-labeled fatty acids revealed that the ELO/DES pathway is the only DHA synthesis pathway in Parietichytrium sp. Disruption of the C20 fatty acid ELO (C20ELO) and ∆4 fatty acid DES (∆4DES) genes with expression of ω3 fatty acid DES in this thraustochytrid allowed the production of EPA and n-3docosapentaenoic acid (n-3DPA), respectively, at the highest level among known microbial sources using fed-batch culture.


Sign in / Sign up

Export Citation Format

Share Document