Effect of NPK fertilizations on Kalmia angustifolia: Implications for forest disturbance and conifer regeneration

1996 ◽  
Vol 81 (1-3) ◽  
pp. 135-141 ◽  
Author(s):  
A.U. Mallik
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Prayuth Sudathip ◽  
Suravadee Kitchakarn ◽  
Jui A. Shah ◽  
Donal Bisanzio ◽  
Felicity Young ◽  
...  

Abstract Background Thailand’s success in reducing malaria burden is built on the efficient “1-3-7” strategy applied to the surveillance system. The strategy is based on rapid case notification within 1 day, case investigation within 3 days, and targeted foci response to reduce the spread of Plasmodium spp. within 7 days. Autochthonous transmission is still occurring in the country, threatening the goal of reaching malaria-free status by 2024. This study aimed to assess the effectiveness of the 1-3-7 strategy and identify factors associated with presence of active foci. Methods Data from the national malaria information system were extracted from fiscal years 2013 to 2019; after data cleaning, the final dataset included 81,012 foci. A Cox’s proportional hazards model was built to investigate factors linked with the probability of becoming an active focus from 2015 to 2019 among foci that changed status from non-active to active focus during the study period. We performed a model selection technique based on the Akaike Information Criteria (AIC). Results The number of yearly active foci decreased from 2227 to 2013 to 700 in 2019 (68.5 %), and the number of autochthonous cases declined from 17,553 to 3,787 (78.4 %). The best Cox’s hazard model showed that foci in which vector control interventions were required were 18 % more likely to become an active focus. Increasing compliance with the 1-3-7 strategy had a protective effect, with a 22 % risk reduction among foci with over 80 % adherence to 1-3-7 timeliness protocols. Other factors associated with likelihood to become or remain an active focus include previous classification as an active focus, presence of Plasmodium falciparum infections, level of forest disturbance, and location in border provinces. Conclusions These results identified factors that favored regression of non-active foci to active foci during the study period. The model and relative risk map align with the national malaria program’s district stratification and shows strong spatial heterogeneity, with high probability to record active foci in border provinces. The results of the study may be useful for honing Thailand’s program to eliminate malaria and for other countries aiming to accelerate malaria elimination.


Author(s):  
Maame Esi Hammond ◽  
Radek Pokorný ◽  
Daniel Okae-Anti ◽  
Augustine Gyedu ◽  
Irene Otwuwa Obeng

AbstractThe positive ecological interaction between gap formation and natural regeneration has been examined but little research has been carried out on the effects of gaps on natural regeneration in forests under different intensities of disturbance. This study evaluates the composition, diversity, regeneration density and abundance of natural regeneration of tree species in gaps in undisturbed, intermittently disturbed, and disturbed forest sites. Bia Tano Forest Reserve in Ghana was the study area and three gaps each were selected in the three forest site categories. Ten circular subsampling areas of 1 m2 were delineated at 2 m spacing along north, south, east, and west transects within individual gaps. Data on natural regeneration < 350 cm height were gathered. The results show that the intensity of disturbance was disproportional to gap size. Species diversity differed significantly between undisturbed and disturbed sites and, also between intermittently disturbed and disturbed sites for Simpson’s (1-D), Equitability (J), and Berger–Parker (B–P) indices. However, there was no significant difference among forest sites for Shannon diversity (H) and Margalef richness (MI) indices. Tree species composition on the sites differed. Regeneration density on the disturbed site was significantly higher than on the two other sites. Greater abundance and density of shade-dependent species on all sites identified them as opportunistic replacements of gap-dependent pioneers. Pioneer species giving way to shade tolerant species is a natural process, thus make them worst variant in gap regeneration.


2009 ◽  
Vol 4 (1-2) ◽  
pp. 73-83 ◽  
Author(s):  
T. Kuemmerle ◽  
J. Kozak ◽  
V. C. Radeloff ◽  
P. Hostert

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hunter Stanke ◽  
Andrew O. Finley ◽  
Grant M. Domke ◽  
Aaron S. Weed ◽  
David W. MacFarlane

AbstractChanging forest disturbance regimes and climate are driving accelerated tree mortality across temperate forests. However, it remains unknown if elevated mortality has induced decline of tree populations and the ecological, economic, and social benefits they provide. Here, we develop a standardized forest demographic index and use it to quantify trends in tree population dynamics over the last two decades in the western United States. The rate and pattern of change we observe across species and tree size-distributions is alarming and often undesirable. We observe significant population decline in a majority of species examined, show decline was particularly severe, albeit size-dependent, among subalpine tree species, and provide evidence of widespread shifts in the size-structure of montane forests. Our findings offer a stark warning of changing forest composition and structure across the western US, and suggest that sustained anthropogenic and natural stress will likely result in broad-scale transformation of temperate forests globally.


2011 ◽  
Vol 17 (9) ◽  
pp. 2842-2852 ◽  
Author(s):  
RUPERT SEIDL ◽  
MART-JAN SCHELHAAS ◽  
MANFRED J. LEXER

Ecology ◽  
2017 ◽  
Vol 98 (8) ◽  
pp. 2133-2144 ◽  
Author(s):  
Noah W. Sokol ◽  
Sara E. Kuebbing ◽  
Mark A. Bradford

Forests ◽  
2016 ◽  
Vol 7 (12) ◽  
pp. 315 ◽  
Author(s):  
Isabelle Tritsch ◽  
Plinio Sist ◽  
Igor Narvaes ◽  
Lucas Mazzei ◽  
Lilian Blanc ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document