Predictions of Co2 solubility and CO2 saturated liquid density of heavy oils and bitumens using a cubic equation of state

1991 ◽  
Vol 64 ◽  
pp. 33-48 ◽  
Author(s):  
A.K.M. Jamaluddin ◽  
N.E. Kalogerakis ◽  
A. Chakma
2019 ◽  
Author(s):  
zhiren he

<p>A new four-parameter cubic equation of state (EoS) is generated by incorporating the critical compressibility factor (Z<sub>c</sub>) apart from the critical pressure (P<sub>c</sub>) and temperature (T<sub>c</sub>). One free parameter in the denominator of the attractive term and two parameters in the alpha function are adjusted using the experimental data of saturated liquid density, vapor pressure, and isobaric liquid heat capacity of 48 components including hydrocarbons and non-hydrocarbons. Applying this equation of state, saturated liquid density, saturated vapor density, and vapor pressure of pure components are accurately reproduced compared with experimental values. Furthermore, the predicted properties including derivatives of alpha function, such as enthalpy of vaporization, entropy of vaporization and isobaric heat capacity of liquid, also have decent accuracy. The global average absolute relative deviation (AAD) of saturated liquid density, saturated vapor density, saturated vapor pressure, enthalpy of vaporization, entropy of vaporization, and isobaric heat capacity of liquid in a wide reduced temperature (Tr) range of subcritical region reproduced by this work are 4.33%, 4.18%, 3.19%, 2.26%, 2.27%, and 5.82%, respectively. Substantial improvement has been achieved for the isobaric liquid heat capacity calculation.</p>


2019 ◽  
Author(s):  
zhiren he

<p>A new four-parameter cubic equation of state (EoS) is generated by incorporating the critical compressibility factor (Z<sub>c</sub>) apart from the critical pressure (P<sub>c</sub>) and temperature (T<sub>c</sub>). One free parameter in the denominator of the attractive term and two parameters in the alpha function are adjusted using the experimental data of saturated liquid density, vapor pressure, and isobaric liquid heat capacity of 48 components including hydrocarbons and non-hydrocarbons. Applying this equation of state, saturated liquid density, saturated vapor density, and vapor pressure of pure components are accurately reproduced compared with experimental values. Furthermore, the predicted properties including derivatives of alpha function, such as enthalpy of vaporization, entropy of vaporization and isobaric heat capacity of liquid, also have decent accuracy. The global average absolute relative deviation (AAD) of saturated liquid density, saturated vapor density, saturated vapor pressure, enthalpy of vaporization, entropy of vaporization, and isobaric heat capacity of liquid in a wide reduced temperature (Tr) range of subcritical region reproduced by this work are 4.33%, 4.18%, 3.19%, 2.26%, 2.27%, and 5.82%, respectively. Substantial improvement has been achieved for the isobaric liquid heat capacity calculation.</p>


2018 ◽  
Vol 40 (4) ◽  
pp. 387-395
Author(s):  
Phan Thi Thu Huong ◽  
Lai Ngoc Anh

This paper presents the study on the determination of the thermodynamic properties of Cis-1,3,3,3-tetrafluoropropene (R1234ze(Z)) with the BACKONE equation of state. The BACKONE's characteristic temperature T0, characteristic density ρ0, anisotropy factor α, and reduce quarupole moment Q*2 were found by fitting the BACKONE EOS to experimental data of vapor pressure and saturated liquid density. All thermodynamic properties such as vapor pressure, pressure in gaseous phase, saturated liquid density, and liquid density can be determined easily from the found molecular characteristic properties. Thermodynamic properties of the R1234ze(Z) were evaluated with available experimental data. Average absolute deviations between calculated vapor pressure data and experimental data were 0.43%. Average absolute deviations between calculated saturated liquid density data and experimental data were 0.43%. In the prediction of the thermodynamic properties, average absolute deviations between calculated liquid density data and experimental data were 0.68% and average absolute deviations between calculated gas density data and experimental data were 1.6%.


1998 ◽  
Vol 1 (02) ◽  
pp. 155-160 ◽  
Author(s):  
Yih-Bor Chang ◽  
Brian K. Coats ◽  
James S. Nolen

Abstract This paper presents a three-dimensional, three-phase compositional model for simulating CO2 flooding including CO2 solubility in water. Both fully implicit and IMPES formulations are included. In this model, CO2 is allowed to dissolve in the aqueous phase while all other components except water exist in the oil and gas phases. Oil- and gas-phase densities and fugacities are modeled by a cubic equation of state. The aqueous phase properties are functions of the amount of dissolved CO2. CO2 solubility is computed using a CO2 fugacity coefficient table that is converted internally from input CO2 solubility data as a function of pressure at reservoir temperature. Correlations for computing the solubility of CO2 in water and other properties of CO2 saturated water are presented. Results for simulation runs with and without CO2 solubility in water are shown for comparison. IntroductIon Compositional models using a cubic equation of state are usually used to simulate the enhanced recovery process of gas injection. In most of the published models, for example Coats and Young and Stephenson, all hydrocarbon components exist in the oil and gas phases but are not allowed to dissolve in the aqueous phase. Usually, this assumption is adequate since the hydrocarbon solubility in water is low over the range of temperature and pressure for gas injection. Carbon dioxide, however, is an exception to this assumption. The solubility of CO2 in water is much higher than that of hydrocarbon components and is a factor that can not be neglected in the simulation process. This is especially true when CO2 is injected into a previously waterflooded reservoir or when CO2 is injected with water for mobility control. Tile objective of this paper is to model oil recovery processes involving CO2 injection while taking into account the effects of CO2 solubility in water. The effects of the presence of an aqueous phase on the phase behavior of CO2/hydrocarbon systems have been experimentally studied by Pollack et al. It was found that the presence of water reduces the amount of CO2 available for mixing with the hydrocarbons, and shifts the pressure-composition diagram of CO2/crude oil system. The solubility of CO2 in water is a function of temperature, pressure and water salinity. A thorough study of CO2 solubility data in distilled water was presented by Dodds et al. In general, CO2 solubility increases with pressure and decreases with temperature. An increase in salinity of the reservoir water decreases CO2 solubility significantly. Li and Nghiem used Henry's Law to estimate CO2 solubility in distilled water and used the scaled-particle theory to take into account the presence of salt in the aqueous phase. Enick and Klara also used Henry's Law to predict CO2 solubility in distilled water. Tile decreased solubility of CO2 in brine was accounted for empirically by a single factor correlated to the weight percent of dissolved solid. However, a wide scatter of data characterizes their correlation. A compositional model for simulating CO2 floods including CO2 solubility in water is presented. In this model, hydrocarbons and CO2 are allowed to exist in the oil and gas phases while only CO2 and water exist in the aqueous phase. A cubic equation of state is used to model oil- and gas-phase densities and fugacities. An input table of CO2 solubility in water, water formation volume factor, water compressibility and water viscosity is required for this model. These data, which are obtained either experimentally or generated from correlations, are entered as a function of pressure at reservoir temperature. The CO2 solubility in water is internally converted into a fugacity coefficient table as a function of pressure. The fugacity coefficients are then used to compute the amount of CO2 in water during simulation using the equality of component chemical potential constraint. The water formation volume factor, compressibility and viscosity are then computed as a function of the amount of CO2 dissolved in the water.


Sign in / Sign up

Export Citation Format

Share Document