Correlation functions of the chiral Potts chain from conformal field theory and finite-size corrections

1991 ◽  
Vol 350 (3) ◽  
pp. 745-788 ◽  
Author(s):  
Giuseppe Albertini ◽  
Barry M. McCoy
1993 ◽  
Vol 08 (23) ◽  
pp. 4031-4053
Author(s):  
HOVIK D. TOOMASSIAN

The structure of the free field representation and some four-point correlation functions of the SU(3) conformal field theory are considered.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Christopher P. Herzog ◽  
Abhay Shrestha

Abstract This paper is designed to be a practical tool for constructing and investigating two-point correlation functions in defect conformal field theory, directly in physical space, between any two bulk primaries or between a bulk primary and a defect primary, with arbitrary spin. Although geometrically elegant and ultimately a more powerful approach, the embedding space formalism gets rather cumbersome when dealing with mixed symmetry tensors, especially in the projection to physical space. The results in this paper provide an alternative method for studying two-point correlation functions for a generic d-dimensional conformal field theory with a flat p-dimensional defect and d − p = q co-dimensions. We tabulate some examples of correlation functions involving a conserved current, an energy momentum tensor and a Maxwell field strength, while analysing the constraints arising from conservation and the equations of motion. A method for obtaining bulk-to-defect correlators is also explained. Some explicit examples are considered: free scalar theory on ℝp× (ℝq/ℤ2) and a free four dimensional Maxwell theory on a wedge.


1993 ◽  
Vol 08 (31) ◽  
pp. 5537-5561 ◽  
Author(s):  
HITOSHI KONNO

We consider the Feigin-Fuchs-Felder formalism of the SU (2)k× SU (2)l/ SU (2)k+l coset minimal conformal field theory and extend it to higher genus. We investigate a double BRST complex with respect to two compatible BRST charges, one associated with the parafermion sector and the other associated with the minimal sector in the theory. The usual screened vertex operator is extended to the BRST-invariant screened three-string vertex. We carry out a sewing operation of these vertices and derive the BRST-invariant screened g-loop operator. The latter operator characterizes the higher genus structure of the theory. An analogous operator formalism for the topological minimal model is obtained as the limit l=0 of the coset theory. We give some calculations of correlation functions on higher genus.


1997 ◽  
Vol 12 (21) ◽  
pp. 3723-3738 ◽  
Author(s):  
A. Shafiekhani ◽  
M. R. Rahimi Tabar

It is shown explicitly that the correlation functions of conformal field theories (CFT) with the logarithmic operators are invariant under the differential realization of Borel subalgebra of [Formula: see text]-algebra. This algebra is constructed by tensor-operator algebra of differential representation of ordinary [Formula: see text]. This method allows us to write differential equations which can be used to find general expression for three- and four-point correlation functions possessing logarithmic operators. The operator product expansion (OPE) coefficients of general logarithmic CFT are given up to third level.


1993 ◽  
Vol 07 (20n21) ◽  
pp. 3617-3648 ◽  
Author(s):  
S. Dasmahapatra ◽  
R. Dedem ◽  
T.R. Klassen ◽  
B.M. McCoy ◽  
E. Melzer

We review recent results concerning the representation of conformal field theory characters in terms of fermionic quasi-particle excitations, and describe in detail their construction in the case of the integrable three-state Potts chain. These fermionic representations are q-series which are generalizations of the sums occurring in the Rogers-Ramanujan identities.


2009 ◽  
Vol 24 (26) ◽  
pp. 2089-2097 ◽  
Author(s):  
ZHENG YIN

We study conformal field theory on two-dimensional orbifolds and show this to be an effective way to analyze physical effects of geometric singularities with angular deficits. They are closely related to boundaries and cross caps. Representative classes of singularities can be described exactly using generalizations of boundary states. From this we compute correlation functions and derive the spectra of excitations localized at the singularities.


Sign in / Sign up

Export Citation Format

Share Document