Effects of hydrogen bonding on the infrared spectra of some complex ammonium halides

1972 ◽  
Vol 28 (1) ◽  
pp. 45-50 ◽  
Author(s):  
J.R.E. Dunsmuir ◽  
A.P. Lane
1979 ◽  
Vol 57 (15) ◽  
pp. 2003-2003
Author(s):  
Osvald Knop ◽  
Ian A. Oxton ◽  
Michael Falk

not available


1968 ◽  
Vol 46 (1) ◽  
pp. 21-24 ◽  
Author(s):  
W. W. Zajac Jr. ◽  
F. Sweet ◽  
R. K. Brown

Infrared spectra show both free and hydrogen bonded hydroxyl absorption in several trans-2-alkoxy-3-hydroxytetrahydrofurans. The extent of non-bonded hydroxyl is greater than that of bonded hydroxyl. Suggestions are made of possible conformations which might account for the infrared data.


2000 ◽  
Vol 328 (3) ◽  
pp. 307-319 ◽  
Author(s):  
Mark Rozenberg ◽  
Aharon Loewenschuss ◽  
Yizhak Marcus

The equilibrium constants of gas-phase complexes of HF with dimethyl, methyl ethyl and diethyl ether have been measured at several temperatures using the Benesi-Hildebrand approximation on the absorption band of the HF stretching vibration in the complex. From these, values of Δ H of — 43, — 38 and — 30 kJ mol -1 respectively, have been determined. They are interpreted in terms of conformational rearrangements of the ethers when they form hydrogen bonds. The far infrared spectra of the complexes with both HF and DF have also been recorded and in each case a band observed at around 180 cm -1 which is assigned to the intermolecular stretching mode of vibration. For the complex between HF and dimethyl ether a rotational contour has been observed at about 10 cm -1 .


2020 ◽  
Vol 22 (14) ◽  
pp. 7497-7506 ◽  
Author(s):  
O. Palumbo ◽  
A. Cimini ◽  
F. Trequattrini ◽  
J.-B. Brubach ◽  
P. Roy ◽  
...  

DFT calculations with the ωB97-D functional reproduce hydrogen bonding features of the far-infrared spectra of diethylmethylammonium methanesulfonate and diethylmethylammonium trifluoromethanesulfonate.


2015 ◽  
Vol 119 (18) ◽  
pp. 4224-4236 ◽  
Author(s):  
Teresa Fornaro ◽  
Diletta Burini ◽  
Malgorzata Biczysko ◽  
Vincenzo Barone

1983 ◽  
Vol 61 (9) ◽  
pp. 2077-2088 ◽  
Author(s):  
Theresa Huston ◽  
I. C. Hisatsune ◽  
Julian Heicklen

Low-temperature infrared spectroscopy has been used to examine the systems NH3 + H2O, NH3 + HCl, H2O + HCl, NH3 + HNO3, and NH2OH + HNO3. Hydrogen-bonding in the solid states greatly reduces the reactivities in these systems. Temperatures where reactions initiated in the systems NH3(s) + HCl(g), HNO3(s) + NH3(g), H2O(s) + HCl(g), and NH2OH(s) + HNO3(s) were, respectively, −145, −130, −127, and −125 °C. Infrared spectra of 2NH3•H2O, NH3•H2O, NH4Cl•3NH3, NH4NO3•3NH3, NH4NO3•2HNO3, NH2OH2+NO3−, NH3OH+NO3−, H3O+Cl−, H5O2+Cl−, and H5O2+Cl−•H2O have been identified in these reaction systems.


1964 ◽  
Vol 42 (12) ◽  
pp. 2674-2683 ◽  
Author(s):  
A. Balasubramanian ◽  
J. B. Capindale ◽  
W. F. Forbes

The ultraviolet spectra of a number of 2,4-dinitrodiphenylamines suggest that these compounds are generally non-planar in a number of different solvents. The infrared and ultraviolet spectral data in different solvents also suggest that an intramolecular hydrogen bond is present in these molecules, at least in inert solvents. There is evidence that a p-nitro substituent is necessary to increase the positive charge on the amino group sufficiently to permit it to form this fairly strong type of hydrogen bond.


1967 ◽  
Vol 8 (2) ◽  
pp. 221-223 ◽  
Author(s):  
T. D. Fedotova ◽  
A. A. Opalovskii ◽  
Z. A. Grankina ◽  
E. V. Sobolev

Sign in / Sign up

Export Citation Format

Share Document