The theorem of a constant heat flux ratio at the phase boundary of a geometric one-dimensional freezing or melting problem

1975 ◽  
Vol 2 (2) ◽  
pp. 127-133 ◽  
Author(s):  
S Lin
2006 ◽  
Vol 128 (8) ◽  
pp. 811-818 ◽  
Author(s):  
Jinny Rhee ◽  
Robert J. Moffat

Abstract The continuous, one-dimensional kernel function in a rectangular duct subject to forced convection with air was experimentally estimated using liquid crystal thermography techniques. Analytical relationships between the kernel function for internal flow and the temperature distribution resulting from a known heat flux distribution were manipulated to accomplish this objective. The kernel function in the hydrodynamically fully developed region was found to be proportional to the streamwise temperature gradient resulting from a constant heat flux surface. In the hydrodynamic entry region of the rectangular duct, a model for the kernel function was proposed and used in its experimental determination. The kernel functions obtained by the present work were shown to be capable of predicting the highly nonuniform surface temperature rise above the inlet temperature resulting from an arbitrary heat flux distribution to within the experimental uncertainty. This is better than the prediction obtained using the analytically derived kernel function for turbulent flow between parallel plates, and the prediction obtained using the conventional heat transfer coefficient for constant heat flux boundary conditions. The latter prediction fails to capture both the quantitative and qualitative nature of the problem. The results of this work are relevant to applications involving the thermal management of nonuniform temperature surfaces subject to internal convection with air, such as board-level electronics cooling. Reynolds numbers in the turbulent and transition range were examined.


Author(s):  
Yeshayahu Talmon

To bring out details in the fractured surface of a frozen sample in the freeze fracture/freeze-etch technique,the sample or part of it is warmed to enhance water sublimation.One way to do this is to raise the temperature of the entire sample to about -100°C to -90°C. In this case sublimation rates can be calculated by using plots such as Fig.1 (Talmon and Thomas),or by simplified formulae such as that given by Menold and Liittge. To achieve higher rates of sublimation without heating the entire sample a radiative heater can be used (Echlin et al.). In the present paper a simplified method for the calculation of the rates of sublimation under a constant heat flux F [W/m2] at the surface of the sample from a heater placed directly above the sample is described.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hamdy M. Youssef ◽  
Najat A. Alghamdi

Abstract This work is dealing with the temperature reaction and response of skin tissue due to constant surface heat flux. The exact analytical solution has been obtained for the two-temperature dual-phase-lag (TTDPL) of bioheat transfer. We assumed that the skin tissue is subjected to a constant heat flux on the bounding plane of the skin surface. The separation of variables for the governing equations as a finite domain is employed. The transition temperature responses have been obtained and discussed. The results represent that the dual-phase-lag time parameter, heat flux value, and two-temperature parameter have significant effects on the dynamical and conductive temperature increment of the skin tissue. The Two-temperature dual-phase-lag (TTDPL) bioheat transfer model is a successful model to describe the behavior of the thermal wave through the skin tissue.


Sign in / Sign up

Export Citation Format

Share Document