False transmitter, 5,6-dihydroxytryptamine as a tool in selecting serotonergic Helix neurons for studies with isolated, dialysed cells

Author(s):  
Zsuzsa Valasek ◽  
Katalin S.-Rózsa
1991 ◽  
Vol 65 (6) ◽  
pp. 1517-1527 ◽  
Author(s):  
J. L. Yakel

1. The modulation of the voltage-activated Ca2+ current by the neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFa) was investigated in dissociated central neurons from Helix aspersa using whole-cell voltage-clamp recording techniques. External Ba2+ was always used as the charge carrier in this study, and the intracellular Ca2+ concentration was buffered to 20 nM with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). 2. Run-down of the Ca2+ currents was not a problem as long as the neurons were dialyzed with a patch electrode filling solution containing ATP (1 or 2 mM). In ATP-dialyzed neurons, the rate of inactivation of the calcium current increased with time without any significant change in the rate of activation. However, when neurons were dialyzed with guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S; 100 microM; with ATP), the rate of inactivation decreased with time. There was no effect of GTP gamma S on the rate of activation of the Ca2+ current. This suggests that guanosine 5'-triphosphate (GTP)-binding proteins (G proteins) are able to modulate the rate of inactivation of the Ca2+ current in Helix neurons. 3. FMRFa both decreased and enhanced the amplitude of the Ca2+ current in these neurons. This inhibition was observed in most neurons, while the enhancement was observed in 20% of the neurons. Although the enhancement usually was preceded by the inhibitory response, sometimes the enhancement was observed separately. 4. The FMRFa-induced inhibition of the Ca2+ current usually consisted of a decrease in both the amplitude and the rate of inactivation of this current, effects that were reduced as the membrane potential was stepped to more depolarized potentials. A pertussis toxin (PTX)-sensitive G protein mediated this response, whereas no evidence was found to suggest the involvement of any known intracellular messenger. Therefore this inhibition may have resulted from a direct coupling between the FMRFa receptor and the Ca2+ channels via a PTX-sensitive G protein. 5. Arachidonic acid (100 microM) irreversibly reduced the amplitude of the Ca2+ current, but it did not alter the relative inhibition of this current by FMRFa. 6. The FMRFa-induced enhancement of the Ca2+ current was difficult to study because it was observed infrequently, and was rarely observed independently of the FMRFa-induced inhibitory response. In addition, the ability of FMRFa to enhance this current usually disappeared with time.(ABSTRACT TRUNCATED AT 400 WORDS)


1985 ◽  
Vol 117 (3) ◽  
pp. 311-322 ◽  
Author(s):  
Maurice Gola ◽  
Christian Ducreux
Keyword(s):  

1987 ◽  
Vol 76 (1) ◽  
pp. 42-46 ◽  
Author(s):  
Yoshimi Ikemoto ◽  
Norio Akaike ◽  
Kyoichi Ono

1987 ◽  
Vol 65 (5) ◽  
pp. 898-903 ◽  
Author(s):  
D. Swandulla

Adenosine 3′,5′-cyclic monophosphate (cAMP) and CaCl2 were injected by a fast and quantitative pressure injection technique into voltage-clamped, identified Helix neurons. Intracellular elevation of cAMP as well as of Ca2+ activated an inward current (IcAMP and IN). To identify the ionic fluxes during IcAMP and IN changes in [Na+]i, [K+]o, [H+]i, and [Cl−]i were measured with ion-selective microelectrodes (ISMs). Near resting potential, Na+ was the main carrier of IcAMP. K+, and less effectively Ca2+, could substitute for Na+ in carrying IcAMp. H+ and Cl− were excluded as current carriers for IcAMP by means of ISMs. Simultaneous to this action, cAMP decreased a K+ conductance. This decrease was associated with a reduction of the K+ efflux activated by long-lasting depolarizing voltage steps, as directly measured with ISMs located near the external membrane surface. The nearly compensatory increase and decrease of two membrane conductances in the same neuron left the cell input resistance unchanged despite the considerable depolarizing action of intracellularly elevated cAMP. IN was also of nonspecific nature. However, our findings indicate less selectivity for the Ca2+-activated nonspecific channels. Large cations such as choline, TEA, and Tris passed nearly as well as Na+ through the channels. Measurements with ISMs showed that [H+]i and [Cl−]i were unchanged during IN. IN was largest in bursting pacemaker neurons compared with other cells of similar size. It was found to be essential for the burst production in these cells. IcAMP, on the other hand, might be involved in the presynaptic facilitatory action of cAMP, which as yet was attributed solely to a reduction of a K+ conductance.


1986 ◽  
Vol 40 ◽  
pp. 278
Author(s):  
Etuko Kikuchi ◽  
Kazuo Takahama ◽  
Tetuya Shirasaki ◽  
Emiko Yoshida ◽  
Yoshiro Okano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document