pressure injection
Recently Published Documents


TOTAL DOCUMENTS

537
(FIVE YEARS 74)

H-INDEX

32
(FIVE YEARS 4)

Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121789
Author(s):  
Yu Zhao ◽  
Yongfa Zhang ◽  
Haiqing Yang ◽  
Qiang Liu ◽  
Guodong Tian

2021 ◽  
Author(s):  
Sheiva Vakili ◽  
Manickam Kumaravel, MD, FRCR

Author(s):  
Phil Brown ◽  
Yuna Farah Minosky ◽  
Lawrence G. Karlock

2021 ◽  
Author(s):  
Long Liu ◽  
Tianyang Dai ◽  
Qian Xiong ◽  
Yuehua Qian ◽  
Bo Liu

Abstract With increasingly stringent emissions limitation of greenhouse gas and atmospheric pollutants for ship, the direct injection of natural gas on the cylinder head with high-pressure injection is an effective method to make a high power output and decrease harmful gas emissions in marine natural gas dual fuel engines. However, the effects on mixing characteristics of high-pressure natural gas underexpanded jet have not been fully understood. Especially, the injection pressure is up to 30 MPa with large injection quantity and critical surrounding gas conditions for the low-speed two-stroke marine engine. Therefore, this research is focused on the flow and mixing process of the natural gas jet with high-pressure injection under the in-cylinder conditions of low-speed two-stroke marine engine. The gas jet penetration, the distribution of velocity and density, the equivalence ratio and air entrainment have been analyzed under different nozzle hole diameters by numerical simulation. The effects of surrounding gas conditions including pressure, temperature and swirl ratio on air entrainment and equivalence ratio distribution were studied in detail. From the numerical simulation, it is found that the mixing characteristics of natural gas jet can be improved under in-cylinder conditions of higher ambient temperature and swirl ratio, which is relevant to the low-speed two-stroke marine engine.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Dai Matsuda ◽  
Hiroki Saito ◽  
Yuki Wakai ◽  
Daisuke Kawano ◽  
Eriko Matsumura ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5385
Author(s):  
Ornella Chiavola ◽  
Edoardo Frattini ◽  
Simone Lancione ◽  
Fulvio Palmieri

The paper is devoted to the analysis of the operating cycle of a high-pressure injection pump used in common rail systems. The investigation is based on experimental activities, and it is carried out in a novel pump set-up that allows measurements of the instantaneous pressure in the piston working chamber. A single plunger pump has been equipped with a piezo-resistive pressure transducer which allows for the measurement of the pressure signal during pump operation on a test rig. The paper describes the experimental set-up, the modified injection pump equipped with the pressure transducer, and the experimental tests carried out. Main results obtained using a standard commercial diesel fuel are discussed at first; secondly, the focus moves on to the use of an alternative fuel (biodiesel) whose features in terms of bulk modulus, viscosity, and density significantly differ from the reference fuel. Based on the characteristics of the pump operating cycle, the fuel suction and delivery processes are analyzed, pointing out how the used fuel type is reflected on them. The investigations are aimed at describing the operating characteristics of the pump, focusing the attention on those features playing a fundamental role on the global efficiency of the pump. The amplitudes of the pump-work phases, the ranges of pressure fluctuations, and the pressure-rise rates are quantified and reported, providing crucial indications for lumped parameter modeling and design activities in the field of current generation high-pressure injection pumps.


Sign in / Sign up

Export Citation Format

Share Document